Answer:
2 m/s^2, west
Explanation:
Vf=final velcoity
Vi=initial velocity
t=timw

=

= - 2 m/s^2
The - changes direction and makes it opposite
2 m/s, west
Given gravitational potential energy when he's lifted is 2058 J.
Kinetic energy is transferred to the person.
Amount of kinetic energy the person has is -2058 J
velocity of person = 7.67 m/s².
<h3>
Explanation:</h3>
Given:
Weight of person = 70 kg
Lifted height = 3 m
1. Gravitational potential energy of a lifted person is equal to the work done.

Gravitational potential energy is equal to 2058 Joules.
2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.
3. Kinetic energy gained = Potential energy lost = 
Kinetic energy gained by the person = (-2058 kg.m/s²)
4. Velocity = ?
Kinetic energy magnitude= 
Solving for v, we get

The person will be going at a speed of 7.67 m/s².
I think the correct answer from the choices listed above is option D. Galaxies exist in the universe as they form clusters that are light-years away from other clusters. Other choices are really far away from the truth. Hope this answers the question. Have a nice day.
D, 0.140 liters! Hang on a sec and I'll show you a trick I use.
A wave is a result of the disturbance in the equilibrium state. There are two types of wave, transverse and longitudinal. Transverse wave affects amplitude while longitudinal wave affects the frequency of the wave. As for the transverse wave, the magnitude of the perpendicular disturbance of the wave is directly proportional to the amplitude of the wave. The higher the transverse disturbance the higher the amplitude.