Answer:
Yes
Explanation:
There is a difference between the homogeneous mixture of the hydrogen and the oxygen in a 2:1 ratio and the sample of the water vapor.
In the homogeneous mixture of the hydrogen and the oxygen which are present in the ratio, 2:1 , the elements are not chemically combined. They are explosive also as both shows their specific properties. They can be separated by physical means (Condensation, diffusion).
On the other hand, in water vapor, the two elements are chemically bonded in a specific mixture which cannot be separated via physical means. Water has its unique properties and they can be separated by chemical means only.
Nothing unless it was dug out from roots if not they would grom back in a long period of time
Answer:
The partial pressure of neon in the vessel was 239 torr.
Explanation:
In all cases involving gas mixtures, the total gas pressure is related to the partial pressures, that is, the pressures of the individual gaseous components of the mixture. Put simply, the partial pressure of a gas is the pressure it exerts on a mixture of gases.
Dalton's law states that the total pressure of a mixture of gases is equal to the sum of the pressures that each gas would exert if it were alone. Then:
PT= P1 + P2 + P3 + P4…+ Pn
where n is the amount of gases present in the mixture.
In this case:
PT=PN₂ + PAr + PHe + PNe
where:
- PT= 987 torr
- PN₂= 44 torr
- PAr= 486 torr
- PHe= 218 torr
- PNe= ?
Replacing:
987 torr= 44 torr + 486 torr + 218 torr + PNe
Solving:
987 torr= 748 torr + PNe
PNe= 987 torr - 748 torr
PNe= 239 torr
<u><em>The partial pressure of neon in the vessel was 239 torr.</em></u>