The rest energy of a particle is

where

is the rest mass of the particle and c is the speed of light.
The total energy of a relativistic particle is

where v is the speed of the particle.
We want the total energy of the particle to be twice its rest energy, so that

which means:


From which we find the ratio between the speed of the particle v and the speed of light c:

So, the particle should travel at 0.87c in order to have its total energy equal to twice its rest energy.
<span>A cinder cone is formed from relatively low viscosity magma with a high gas content. Cinder cones
are formed by the volcanic ash, cinders that are formed around the volcanic
vent. Cinder cones have a bowl shaped crater and the shape of the cinder cones
depend on the ejected particles that formed the cinder.</span>
The center of gravity is a SIKKE bro you really thought I’d give the answer of something so simple
Answer:
v =25 m/s
time= 50 s
Velocity =Displacement/Time
Displacement = Velocity × Time
S = 25×50
s=1250m
Explanation:
v =25 m/s
time= 50 s
Velocity =Displacement/Time
Displacement = Velocity × Time
Answer:
1387908 lbm/h
Explanation:
Air flowing into jet engine = 70 lbm/s
ρ = Exhaust gas density = 0.1 lbm/ft³
r = Radius of exit with a circular cross section = 1 ft
v = Exhaust gas velocity = 1450 ft/s
Exhaust gas mass (flow rate)= Air flowing into jet engine + Fuel
Q = (70+x) lbm/s
Area of exit with a circular cross section = π×r² = π×1²= π m²
Now from energy balance
Q = ρ×A×v
⇒70+x = 0.1×π×1450
⇒70+x = 455.53
⇒ x = 455.53-70
⇒ x = 385.53 lbm/s
∴ Mass of fuel which is supplied to the engine each minute is 1387908 lbm/h