1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maria [59]
3 years ago
15

At what speed, as a fraction of c , is a particle's total energy twice its rest energy

Physics
1 answer:
WINSTONCH [101]3 years ago
3 0
The rest energy of a particle is
E_0=m_0 c^2
where m_0 is the rest mass of the particle and c is the speed of light.

The total energy of a relativistic particle is
E=mc^2 =  \frac{m_0 c^2}{ \sqrt{1- \frac{v^2}{c^2} } }
where v is the speed of the particle.

We want the total energy of the particle to be twice its rest energy, so that
E=2E_0
which means:
\frac{m_0c^2}{ \sqrt{1- \frac{v^2}{c^2} } }=2m_0 c^2
\frac{1}{ \sqrt{1- \frac{v^2}{c^2} } }=2
From which we find the ratio between the speed of the particle v and the speed of light c:
\frac{v}{c}=  \sqrt{1- (\frac{1}{2})^2 }  =0.87
So, the particle should travel at 0.87c in order to have its total energy equal to twice its rest energy.
You might be interested in
Given Vout = 17.33 vpp and R1 = 3 kΩ, find the value of RF required to provide Av = 4.33. (Round your answer to 2 decimal places
Olenka [21]

Answer:

The magnitude of V_{2} is 4 V and phase of input voltage is zero

Explanation:

Given:

Output voltage V_{out} = 17.33

Resistance R_{1} = 3 kΩ

Voltage gain A_{v} = 4.33

For finding feedback resistance we use gain equation

Gain equation for non inverting op-amp is given by,

     A_{v} = 1+\frac{R_{f} }{R_{1} }

   4.33 = 1+ \frac{R_{f} }{3 k }

     R_{f} ≅ 10 kΩ

For finding input voltage we use,

   A_{v} = \frac{V_{out} }{V_{2} }

    V_{2} = \frac{17.33}{4.33}

    V_{2} = 4 V

The Phase of V_{2} is zero because output voltage phase is 360°

Therefore, the magnitude of V_{2} is 4 V and phase of input voltage is zero

7 0
2 years ago
A planet exerts a gravitational force of magnitude 4e22 N on a star. If the planet were 3 times closer to the star (that is, if
Alex_Xolod [135]

Answer:

3.6\times10^{23} N

Explanation:

F=\frac{GmM}{r^2}=4\times10^{22} N

F'=\frac{GmM}{(r/3)^2}=9\frac{GmM}{r^2}=9\times4\times10^{22}=3.6\times10^{23} N

7 0
2 years ago
A single loop of nickel wire, lying flat in a plane, has an area of 7.40 cm^2 and a resistance of 2.40 Ω. A uniform magnetic fie
ale4655 [162]

Explanation:

It is given that,

Area of nickel wire, A=7.4\ cm^2=7.4\times 10^{-4}\ m^2

Resistance of the wire, R = 2.4 ohms

Initial value of magnetic field, B_1=0.5\ T

Final magnetic field, B_2=3\ T

Time, t = 1.12 s

Let I is the induced current in the loop of wire over this time. Te emf induced in the wire is given by Faraday's law as :

\epsilon=-\dfrac{d\phi}{dt}

\epsilon=-\dfrac{d(BA)}{dt}

\epsilon=-A\dfrac{d(B)}{dt}

\epsilon=-A\dfrac{B_2-B_1}{t}

\epsilon=-7.4\times 10^{-4}\times \dfrac{3-0.5}{1.12}

\epsilon=1.65\times 10^{-3}\ V

Induced current in the loop of wire is given by :

I=\dfrac{\epsilon}{R}

I=\dfrac{1.65\times 10^{-3}}{2.4}

I=6.87\times 10^{-4}\ A

So, the induced current in the loop of wire over this time is 6.87\times 10^{-4}\ A. Hence, this is the required solution.

7 0
3 years ago
Please help :( A ray of laser light strikes a glass surface at an angle θa = 22.5° to the normal. What is the angle θb of the re
pshichka [43]

Answer:

Explanation:

We shall apply law of refraction which is as follows

sin i / sinr = μ  , where i is angle of incidence , r is angle of refraction and μ is refractive index

here i = θa = 22.5°

r = θb

μ  = 1.77

sin22.5 / sinθb = 1.77

.3826 / sinθb = 1.77

sinθb = .216

θb  = 12.5 °.

4 0
3 years ago
shows two parallel nonconducting rings with their central axes along a common line. Ring 1 has uniform charge q1 and radius R; r
Ainat [17]

Answer:

\dfrac{q_1}{q_2}=2\left(\dfrac{2}{5}\right )^{3/2}

Explanation:

Given that

Charge on ring 1 is q1 and radius is R.

Charge on ring 2 is q2 and radius is R.

Distance ,d= 3 R

So the total electric field at point P is given as follows

Given that distance from ring 1 is R

\dfrac{1}{4\pi\epsilon _o}\dfrac{q_1R}{(R^2+R^2)^{3/2}}-\dfrac{1}{4\pi\epsilon _o}\dfrac{q_2(d-R)}{(R^2+(d-R)^2)^{3/2}}=0

\dfrac{1}{4\pi\epsilon _o}\dfrac{q_1R}{(R^2+R^2)^{3/2}}-\dfrac{1}{4\pi\epsilon _o}\dfrac{q_2(3R-R)}{(R^2+4R^2)^{3/2}}=0

\dfrac{q_1R}{(2R^2)^{3/2}}-\dfrac{q_2(2R)}{(5R^2)^{3/2}}=0

\dfrac{q_1}{q_2}=2\left(\dfrac{2}{5}\right )^{3/2}

8 0
3 years ago
Read 2 more answers
Other questions:
  • A ball of radius 0.220 m rolls along a horizontal table top with a constant linear speed of 3.70 m/s.?
    7·1 answer
  • A velocity selector is built with a magnetic field of magnitude 5.2 T and an electric field of strength 4.6 × 10 ^ 4 N/C. The di
    10·1 answer
  • An element's atomic number is the​
    6·1 answer
  • Scouts at a camp shake the rope bridge they have just crossed and observe the wave crests to be 9.70 m apart. If they shake the
    9·1 answer
  • There are two types of waves, mechanical and electromagnetic. Microwaves, infrared, and radio was are examples of electromagneti
    13·1 answer
  • After a long night of cramming for a test, your college room-mate hits his head forcefully against the wall of your room in desp
    8·1 answer
  • Complete this equation that represents the process of nuclear fusion. Superscript 226 Subscript 88 Baseline R a yields Superscri
    10·2 answers
  • EXPLAIN CONSERVATION OF MOMEMTUM WITH THE HELP OF COLLISION OF TWO OBJECT.
    13·1 answer
  • How can I solve this?
    9·1 answer
  • Sarah and her bicycle have a total mass of 40 kg. Her speed at the top of a 10 m high and 100m long hill is 5 m/s. If the force
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!