Answer:
480
Explanation:
resistance equals to potential difference divide by electric current
120÷0.25
=480
Let's ask this question step by step:
Part A)
a x b = (3.0i + 5.0j) x (2.0i + 4.0j) = (12-10) k = 2k
ab = (3.0i + 5.0j). (2.0i + 4.0j) = 6 + 20 = 26
Part (c)
(a + b) b = [(3.0i + 5.0j) + (2.0i + 4.0j)]. (2.0i + 4.0j)
(a + b) b = (5.0i + 9.0j). (2.0i + 4.0j)
(a + b) b = 10 + 36
(a + b) b = 46
Part (d)
comp (ba) = (a.b) / lbl
a.b = (3.0i + 5.0j). (2.0i + 4.0j) = 6 + 20 = 26
lbl = root ((2.0) ^ 2 + (4.0) ^ 2) = root (20)
comp (ba) = 26 / root (20)
answer
2k
26
46
26 / root (20)
Answer:
Turn the heater on
Explanation:
There are two main forces involved in a balloon flight
The downward force is the total weight of the balloon: the air it contains, the gas bag, the basket, the passengers, etc.
The upward force is the weight of the of the air the balloon displaces.
During level flight
,
buoyant force = weight of displaced air - total weight of balloon
If you increase the temperature of the air in the bag, the air molecules spread out and leave through the bottom of the bag.
The balloon still has the same volume, so the weight of displaced outside air stays the same.
However, the balloon has lost some hot inside air, so its total weight decreases.
The upward force is greater than the downward force, so the balloon rises.
To solve this problem it is necessary to apply the kinematic equations of angular motion.
Torque from the rotational movement is defined as

where
I = Moment of inertia
For a disk
Angular acceleration
The angular acceleration at the same time can be defined as function of angular velocity and angular displacement (Without considering time) through the expression:

Where
Final and Initial Angular velocity
Angular acceleration
Angular displacement
Our values are given as






Using the expression of angular acceleration we can find the to then find the torque, that is,




With the expression of the acceleration found it is now necessary to replace it on the torque equation and the respective moment of inertia for the disk, so




Therefore the torque exerted on it is 