The greater the energy, the larger the frequency and the shorter (smaller) the wavelength. Given the relationship between wavelength and frequency — the higher the frequency, the shorter the wavelength — it follows that short wavelengths are more energetic than long wavelengths.
Answer:
W=16.58J
Explanation:
initial information we have
work: 
stretched distance: 
from this, we can find the value of the constant of the spring k, with the equation for work in a spring:

substituting known values:

and clearing for k:

and now we want to know how much work is done when we stretch the spring a distance of 6.5cm from equilibrium, so now x is:

and using the same formula for work, with the value of k that we just found:


This is true. Gravity is constantly pulling on anything and everything (even light!), no matter how far away it is from another object.
Ignoring the air resistance it will take about 3 seconds for the object to reach the ground.We know that the acceleration due to gravity is 10m/s2.
We also know that the final velocity is 30 m/s while the initial velocity is 0 m/s
we can use the formulae for acceleration to calculate the time taken/
(final - initial velocity)/timetaken=10
(30-0)/timetaken=10
timetaken =30/10=3 seconds
Answer:
567.321nm
Explanation:
See attached handwritten document for more details