Answer:
Circuit 4
Explanation:
To know the correct answer to the question given above, we shall determine the current in each circuit. This can be obtained as follow:
For circuit 1:
Resistance (R) = 0.5 ohms
Voltage (V) = 20 V
Current (I) =?
V = IR
20 = I × 0.5
Divide both side by 0.5
I = 20 / 0.5
I = 40 A
For circuit 2:
Resistance (R) = 0.5 ohms
Voltage (V) = 40 V
Current (I) =?
V = IR
40 = I × 0.5
Divide both side by 0.5
I = 40 / 0.5
I = 80 A
For circuit 3:
Resistance (R) = 0.25 ohms
Voltage (V) = 40 V
Current (I) =?
V = IR
40 = I × 0.25
Divide both side by 0.25
I = 40 / 0.25
I = 160 A
For circuit 4:
Resistance (R) = 0.25 ohms
Voltage (V) = 60 V
Current (I) =?
V = IR
60 = I × 0.25
Divide both side by 0.25
I = 60 / 0.25
I = 240 A
SUMMARY
Circuit >>>>>> Current
1 >>>>>>>>>>> 40 A
2 >>>>>>>>>>> 80 A
3 >>>>>>>>>>> 160 A
4 >>>>>>>>>>> 240 A
From the above calculation, circuit 4 has the greatest electric current.
The fluoride content of bottled water is unpredictable.
Answer:
23.92 g
Explanation:
Molar mass of H2SO4 = (2×1)+32+(16×4)= 2+32+48= 82g/mol
H2SO4 + 2NaOH ---> Na2SO4 + 2H2O
I mole of H2SO4 = 2 moles of NaOH
24.5/82 = 24.5/82 × 2
= 0.598 moles of NaOH will neutralize
Mass= mole× molar mass
Molar mass of NaOH= 23+16+1 = 40g/mol
Mass= 0.598 × 40 = 23.92g of NaOH
I believe the percent yield is 56% if going by the formula of mass of actual yield/theoretical yield x 100%/
Answer:
<h2>7142.86 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>7142.86 moles</h3>
Hope this helps you