Calculate the ratio by using Henderson-Hasselbalch equation:
pH = pKa + log [neutral form] / Protonated form
3.05 = 2.21 + log [neutral form] / [Protonated form]
3.05 - 2.21 = log [neutral form] / [Protonated form]
0.84 = log [neutral form] / [Protonated form]
[neutral form] / [protonated form] = anti log 0.84 = 6.91
Can you be more specific?
...Diamond is the best conductor of heat, but heat also transmits readily through many other substances. Do you have multiple choice?
Answer: 116 g of copper
Explanation:

where Q= quantity of electricity in coloumbs
I = current in amperes = 24.5A
t= time in seconds = 4.00 hr =
(1hr=3600s)

of electricity deposits 63.5 g of copper.
352800 C of electricity deposits =
of copper.
Thus 116 g of Cu(s) is electroplated by running 24.5A of current
Thus remaining in solution = (0.1-0.003)=0.097moles
<span>You have to use a Newman projection to make sure that the H on C#2 is anti-coplanar with the Br on C#1. (Those are the two things that are going to be eliminated to make the alkene.)
My Newman projection looks like this when it's in the right configuration:
Front carbon (C#2) has ethyl group straight up, H down/left, and CH3 down/right
Back carbon (C#1) has H straight down, Ph up/left, and Br up/right.
Then when you eliminate the H from C#2 and the Br from C#1, you will have Ph and the ethyl group on the same side of the molecule, and you'll have the remaining H and CH3 on the same side of the molecule.
This is going to give you (Z)-2-methyl-1-phenyl-1-butene.</span>