Answer:

Explanation:
Since we are given the mass, specific heat, and temperature, we should use the following formula for heat energy.

The mass of the aluminum is 26.3 grams. Its specific heat is 0.930 Joules per gram degree Celsius. We need to find the change in temperature.
- The change in temperature is the difference between the initial temperature to the final temperature.
- The temperature changes <em>from</em> 23.0°C <em>to</em> 67.0°C, so the initial is 23 degrees and the final is 67 degrees.
- ΔT= final temperature - initial temperature
- ΔT= 67°C - 23°C
- ΔT= 44°C
Now we know all the values.
- m= 26.3 g
- c= 0.930 J/g °C
- ΔT= 44°C
Substitute the values into the formula.

Multiply the first two numbers together. The units of grams cancel.

Multiply again. This time, the units of degrees Celsius cancel.

<u>1076.196 Joules</u> of heat will be absorbed by the piece of aluminum.
The atomic weight of carbon dioxide is about 12.011 + 15.999 + 15.999 = 44.009.
44.009 grams of CO2 = 1 mole of CO2 CO2 = Carbon dioxide
25 ÷ 44.009 ≈ 0.568
About 0.568 moles of CO2
Answer:there different from the rocky like planets gas giants don't have such a firm surface like rocky terrestrial planets
Explanation:
Redox reactions are those <u>chemical reactions that involve the transfer of electrons between reactants</u>, altering the <em>oxidation state</em> of their elements.
In this type of reactions an element releases electrons that another element accepts, so there is a net transfer of charge.
When balancing redox reactions, not only must the chemical elements in the reactants and products be equalized (by the <em>law of conservation of the mass</em>), but also the charged that is transferred in the process must be balanced, since <u>the electrons that are lost in oxidation are the same as those that are gained in reduction (</u><em>law of conservation of charge:</em> <em>there is no destruction or net creation of electric charge</em>).