In conclusion, a thermos is a useful drinking cup for storing hot liquids in certain room temperatures. Drinks like coffee, tea, and other hot liquids can still stay warm thanks to the thermos.
Answer:
Refractive index of liquid C > Refractive index of liquid B > Refractive index of liquid A
Explanation:
Let the depth of each section is h.
That means the real depth for each section is h.
Apparent depth is liquid A is 7 cm.
Apparent depth in liquid B is 6 cm.
Apparent depth in liquid C is 5 cm.
by the formula of the refractive index
n = real depth / apparent depth
where, n is the refractive index of the liquid.
For liquid A:
.... (1)
For liquid B:
..... (2)
For liquid C:
..... (3)
By comparing all the three equations
nc > nB > nA
Refractive index of liquid C > Refractive index of liquid B > Refractive index of liquid A
Answer:
<u>Atom</u><u> </u><u>is </u><u>particle</u><u> </u><u>of </u><u>matter</u><u> </u><u>that </u><u>uniquely</u><u> </u><u>defines</u><u> </u><u>a</u><u> </u><u>chemical</u><u> </u><u>element</u><u>.</u>
Examples of atom:
- Hydrogen [ H]
- Neon [Ne]
- Argon [A]
- Iron [Fe]
- Calcium [Ca]
<h3>
About Atom:</h3>
Atom consists of a central nucleus that is usually surrounded by one or more electrons .Each electron is negatively charged. The nucleus is positively charged and contains one or more relatively heavy particles known as protons and neutrons.
An early model of the atom was developed by the physicist Ernest Rutherford in 1913. He was the first to suggest that atoms are like miniature solar systems except that the attractive force is not caused by gravity, but by opposing electrical charged.
Hope this helps....
Good luck on your assignment...
Explanation:
Elastic collision is said to occur if the total kinetic energy is not conserved and if there is a rebound after collision
Step one
Analysis of the problem
Immediately after impact the car's velocity was zero making it a perfect elastic collision
Step two
Given
Mass of car M1=1800kg
Mass of truck M2=5200kg
Initial velocity of Car U1=44m/s
Initial velocity of truck U2=21m/s
Final velocity of car V1= 0m/s
Final velocity of truck V2=20m/s
Step three
According to the principle of conservation of momentum
Total momentum before collision
=M1U1+M2U2
Total momentum after impact
=M1V1+M2V2
M1U1+M2U2 =M1V1+M2V2
Substituting our data into the expression we have 1500*44+5800*21=1500*0+5800*20
=66000+1218000=11600
1284000=11600
From the solution the momentum before impact is 1284000Ns
Momentum after impact is 11600Ns
This is indicating that after impact there was loss in momentum as a result of the car having a velocity of zero