It <span>states that the force F needed to extend or compress a spring by some distance X is proportional to that distance.
For elastic materials, they extend more in same amount of force, (as they are directly proportional), due to it's elastic nature (presence of large deforming force)
Hope this helps!</span>
Pretty much any element(in your case sodium) contain these properties.
Atoms can be an ion, but not all ions are atoms. The difference between an atom and an ion has to do with net electrical charge. An ion is a particle or collection of particles with a net positive or negative charge. ... A stable atom contains the same number of electrons as protons and no net charge
Answer:
50.4 N
Explanation:
Q1 = Q
Q2 = 4 Q
Distance = d
The force is given by

.... (1)
Now,
Q3 = 2 Q
Q4 = 7 Q
distance = d/3

.... (2)
Divide equation (2) by equation (1), we get
F' / 1.60 = 126 / 4
F' = 50.4 N
Thus, the force is 50.4 N.
The force needed to accelerate an elevator upward at a rate of
is 2000 N or 2 kN.
<u>Explanation:
</u>
As per Newton's second law of motion, an object's acceleration is directly proportional to the external unbalanced force acting on it and inversely proportional to the mass of the object.
As the object given here is an elevator with mass 1000 kg and the acceleration is given as
, the force needed to accelerate it can be obtained by taking the product of mass and acceleration.


So 2000 N or 2 kN amount of force is needed to accelerate the elevator upward at a rate of
.
Answer:
a) 107.1875 Hz
b) 214.375 Hz
c) 321.5625 Hz
Explanation:
L = length of the open organ pipe = 1.6 m
v = speed of sound = 343 m/s
f = fundamental frequency
fundamental frequency is given as

inserting the values


Hz
b)
first overtone is given as
f' = 2f
f' = 2 (107.1875)
f' = 214.375 Hz
c)
first overtone is given as
f'' = 3f
f'' = 3 (107.1875)
f'' = 321.5625 Hz