Answer:
They oscillates perpendicularly to one another, the oscillation of one field generates the other field.
Explanation:
In a light wave, an oscillating electric field of a light wave produces a magnetic field, and the magnetic field also oscillates to produce an electric field. The magnetic field and the electric field of a light wave both oscillates perpendicularly to one another. The resultant energy and direction of the wave generated as a result of these oscillating fields is propagated perpendicularly to both fields.
it depends on the atom . but in some cases it may explode
*l Take in air and fuel (Intake)
*l Compress (squeeze) the air and fuel (Compression)
*l Ignite and burn the air-and-fuel mixture (Power)
*l Get rid of the burned fuel gases (Exhaust)The Answer is C.Exhaust
A light goes out when you turn off the wall switch because <u />B. the switch causes a break in the circuit.
Since there is a break in the circuit, electricity cannot come through to the bulb, which is why there is no light anymore.
Answer:
explanation of this effect is the photoelectric effect
Explanation:
Let's describe the process, when light of large wavelength falls, this implies a small energy, according to Planck's equation
E = h f =
the energy of the photons is not enough to carry out an electronic transition between two states of the material, when we decrease the wavelength (the energy of the photons increases), the point is reached where the energy of the beam is equal to some energy of a transition, by which the electrons are promoted and since we can see a certain charge, as the atoms are neutral, some electrons must be removed from the material, this is represented in the macroscopic case as the work function of the material, consequently a unbalanced load that is what we can measure.
When we increase the lightning intensity, what we do is that we increase the number of photons and if each photon can remove an electron, by removing the electrons the difference between it and the positive charge (fixed in the nuclei) increases.
We can analyze the interaction of the photon and the electron as a particular collision.
The explanation of this effect was made by Einstein in his explained of the photoelectric effect