Answer:
1.35 kJ
Explanation:
KE = ½mv² = ½ × 0.030 kg × (300 m·s⁻¹)² = 1350 J = 1.35 kJ
Answer:
Mass remains constant but weight reduces
Explanation:
Mass is the amount of matter in an object so whether on moon or any other planet, it does not change despite the changes in acceleration.
Weight is a product of mass and acceleration due to gravity, expressed as W=mg where m is the mass, W is weight and g is acceleration. From the above formula, it is evident that when you decrease g, then W also decreases while m is constant. Similarly, when m is constant and g is increased then W also increases.
Therefore, for this case, since g decreases, the weight decreases but mass remains constant.
True: Friction depends on the types of surfaces involved and how hard the surfaces push together.
The first collision because a greater amount of momentum must be taken and used in order to push the cart back, giving it a greater mass and impulse
The final momentum of the ball is 3.8 kgm/s.
<h3>Change in momentum of the ball</h3>
The impulse received by the ball is equal to change in momentum of the ball.
J = ΔP
where;
- J is the impulse
- ΔP is change in momentum
ΔP = P₂ - P₁
P₂ = ΔP + P₁
<h3>Final momentum of the ball</h3>
The final momentum of the ball is calculated as follows;
P₂ = 8 + (- 0.1 x 42)
P₂ = 8 - 4.2
P₂ = 3.8 kgm/s
Learn more about change in momentum here: brainly.com/question/7538238