1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergio039 [100]
3 years ago
12

Simple Harmonic Motion

Physics
1 answer:
Delvig [45]3 years ago
7 0

- The net force is greatest at the position of maximum displacement

- The net force is zero when at the equilibrium position

Explanation:

The motion of a spring is a Simple Harmonic Motion, in which the displacement of the end of the spring is given by a periodic function of the form

x=Asin (\omega t)

where A is the amplitude (the maximum displacement), and \omega the angular frequency of the motion.

We can analyze the net force acting on the spring by looking at Hooke's law:

F=kx

where

F is the net force

k is the spring constant

x is the displacement

From the equation, we notice immediately that:

  • The net force is the greatest when the displacement x is the greates, so at the position in which the spring has maximum compression or stretching
  • The net force is zero when the displacement x is zero, so when the spring crosses the equilibrium position

Learn more about forces:

brainly.com/question/8459017

brainly.com/question/11292757

brainly.com/question/12978926

#LearnwithBrainly

You might be interested in
A ball is thrown up into the air with an initial velocity of 18 m/s. A) How high does the ball go? B) Calculate the time needed
kaheart [24]

Answer:

B) t = 1.83 [s]

A) y = 16.51 [m]

Explanation:

To solve this problem we must use the following equation of kinematics.

v_{f} =v_{o} -g*t

where:

Vf = final velocity = 0

Vo = initial velocity = 18 [m/s]

g = gravity acceleration = 9.81 [m/s²]

t = time [s]

Note: the negative sign in the above equation means that the acceleration of gravity is acting in the opposite direction to the motion.

A) The maximum height is reached when the final velocity of the ball is zero.

0 = 18 - (9.81*t)

9.81*t = 18

t = 18/9.81

t = 1.83 [s], we found the answer for B.

Now using the following equation.

y = y_{o} + v_{o}*t - 0.5*g*t^{2}\\

where:

y = elevation [m]

Yo = initial elevation = 0

y = 18*(1.83) - 0.5*9.81*(1.83)²

y = 16.51 [m]

7 0
2 years ago
Anyone going to be my friend
Artemon [7]

Explanation:

I'd love to but we cant talk right now cause its 12:22 am here and I'm gonna sleep now lol.

but let's follow each other.

who knows we might be able to help each other.

whaddya say?

have a good day ♡

5 0
2 years ago
Does mars has a bulge near its equator ?
Keith_Richards [23]
Yessir it sure does
7 0
3 years ago
How much work does it take to move a 50 μC charge<br> against a 12 V potential difference?
lukranit [14]
<span>work =V*Q =12*50*10^-6

The total work done will be equal to 

work = V.Q

which means 

w= 12 . 50.10^-6
Hence,
w= 0.0006 J</span>
8 0
2 years ago
Suppose that the current in the solenoid is i(t). The self-inductance L is related to the self-induced EMF E(t) by the equation
Artemon [7]

Answer:

L =   μ₀ n r / 2I

Explanation:

This exercise we must relate several equations, let's start writing the voltage in a coil

        E_{L} = - L dI / dt

 

Let's use Faraday's law

       E = - d Ф_B / dt

in the case of the coil this voltage is the same, so we can equal the two relationships

        - d Ф_B / dt = - L dI / dt

The magnetic flux is the sum of the flux in each turn, if there are n turns in the coil

        n d Ф_B = L dI

we can remove the differentials

      n Ф_B = L I

magnetic flux is defined by

     Ф_B = B . A

in this case the direction of the magnetic field is along the coil and the normal direction to the area as well, therefore the scalar product is reduced to the algebraic product

      n B A = L I

the loop area is

      A = π R²

     

we substitute

       n B π R² = L I                    (1)

To find the magnetic field in the coil let's use Ampere's law

        ∫ B. ds = μ₀ I

where B is the magnetic field and s is the current circulation, in the coil the current circulates along the length of the coil

           s = 2π R

we solve

              B 2ππ R =  μ₀ I

              B =  μ₀ I / 2πR

we substitute in

       n ( μ₀ I / 2πR) π R² = L I

       n  μ₀ R / 2 = L I

       L =   μ₀ n r / 2I

4 0
3 years ago
Other questions:
  • Chemical testing of water
    12·1 answer
  • What is frequency? <br><br> (P.S. please help)
    6·2 answers
  • Bats use a process called echolocation to find their food. This involves giving out sound waves that hit possible prey or food.
    7·2 answers
  • Which of the following particles are responsible for producing electrical<br> energy?
    8·1 answer
  • Why do solid have fixed shape?
    7·2 answers
  • First extinguish a match or candle by blasting it violently. Why?​
    12·1 answer
  • Two skaters, one with mass 52.5 kg and the other with mass 26.3 kg, stand on an ice rink holding a pole with a length of 5.00 m
    14·1 answer
  • When we plot all the points that satisfy an equation or inequality we ___ it.
    15·2 answers
  • Examine the following equation.
    12·1 answer
  • Tuklasin
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!