Answer:
351.43mL
Explanation:
To calculate the original volume of hydrogen gas in this question, the Boyle's law equation will be used. Boyle's law equation is:
P1V1 = P2V2
Where; P1 = initial pressure
V1 = initial volume
P2 = final pressure
V2 = final volume
According to this question, the P1= 1.56atm, V1 = ?, P2 = 0.73atm, V2 = 751mL
Hence;
P1V1 = P2V2
1.56 × V1 = 0.73 × 751
1.56 V1 = 548.23
V1 = 548.23/1.56
V1 = 351.43mL
Therefore, the original volume of hydrogen gas is 351.43 mL.
1. True 2. False 3.false 4. False 5. True
it is a i believe: Bicarbonate and carbonic acid (A)
Answer:
The answer is 102.3!
Explanation:
you get this by multiplying 34.1 x 3 to get 102.3.
Wondering why you multiply 34.1 times 3?
WELLLLLLLLLLL...
when you get 1 mole of h202, you get 34.1 so if you ask for 3 moles of H202, you get 102.3!
Answer:
27.9 g
Explanation:
CsF + XeF₆ → CsXeF₇
First we <u>convert 73.1 g of cesium xenon heptafluoride (CsXeF₇) into moles</u>, using its<em> molar mass</em>:
- Molar mass of CsXeF₇ = 397.193 g/mol
- 73.1 g CsXeF₇ ÷ 397.193 g/mol = 0.184 mol CsXeF₇
As <em>1 mol of cesium fluoride (CsF) produces 1 mol of CsXeF₇</em>, in order to produce 0.184 moles of CsXeF₇ we would need 0.184 moles of CsF.
Now we <u>convert 0.184 moles of CsF to moles</u>, using the <em>molar mass of CsF</em>:
- Molar mass of CsF = 151.9 g/mol
- 0.184 mol * 151.9 g/mol = 27.9 g