Explanation:
A gas has a temperature of 273.15 K and a pressure of 101.325 kPa. It can be concluded that this gas has reached standard temperature and pressure.
Standard temperature is zero degree celcius which corresponds to 273.15 degree kelvin.
Standard pressure is 760 mmHg which corresponds to 101.325 kPa.
Answer:
Therefore the theoretical density of iron is 7.877 g/cm³ .
Therefore the number of vacancy per cm³ is
Explanation:
Answer:
ΔH°rxn = -827.5 kJ
Explanation:
Let's consider the following balanced equation.
2 PbS(s) + 3 O₂(g) → 2 PbO(s) + 2 SO₂(g)
We can calculate the standard enthalpy of reaction (ΔH°rxn) from the standard enthalpies of formation (ΔH°f) using the following expression.
ΔH°rxn = [2 mol × ΔH°f(PbO(s)) + 2 mol × ΔH°f(SO₂(g)
)] - [2 mol × ΔH°f(PbS(s)) + 3 mol × ΔH°f(O₂(g)
)]
ΔH°rxn = [2 mol × ΔH°f(PbO(s)) + 2 mol × ΔH°f(SO₂(g)
)] - [2 mol × ΔH°f(PbS(s)) + 3 mol × ΔH°f(O₂(g)
)]
ΔH°rxn = [2 mol × (-217.32 kJ/mol) + 2 mol × (-296.83)] - [2 mol × (-100.4) + 3 mol × 0 kJ/mol]
ΔH°rxn = -827.5 kJ
Answer:
480 L
Explanation:
In order to solve this question, you should be familiar with gas laws. (I will attach a picture showing all of them under my answer.) In this question in particular, however, we only need Charles's Law because we're dealing with temperature and volume.
As we can see, Charles's Law is:

or, initial volume over initial temperature equals final volume over final temperature.
In this question, 60 L is our <u>initial volume,</u> and 0.5 K is our <u>initial temperature</u> (K being Kelvin). We are only given 4 K as our <u>final temperature</u>. We are asked to solve for the <u>final volume</u>. Let's set up the equation and solve for
:
--------------------------------------------------------------------------------------------------------------
(60) / (0.5) =
/ (4)
↓
120 =
/ 4
×4 ×4
↓
= 480 L
--------------------------------------------------------------------------------------------------------------
There's our answer! Feel free to comment if you have any questions about my answer :)
Answer:
-2
Explanation:
carbonate oxifation number is -2