Try photo math it will probably be more helpful
The rate law depicts the effect of concentration on reaction rate. Second mechanism 2NO(g) ⇄ N₂O₂(g) [fast], N₂O₂(g) + O₂(g) → 2NO₂(g) [slow] is most reasonable. Thus, option b is correct.
<h3>What is rate law?</h3>
Rate law and equation give the rate at which the reaction takes place under the influence of the concentration of the reactants. The balanced chemical reaction is given as,
2NO(g) + O₂(g) → 2NO₂(g)
The rate of the equation is given as,
rate = k [NO]² [O₂]
In a multi-step chemical reaction, the slowest step is the rate-determining step. The second mechanism is given as,
2NO (g) → N₂O₂ (g) [fast]
N₂O₂(g) +O₂(g) → 2NO₂ (g) [slow]
Rate is given as,
rate = k [N₂O₂] [O₂]
Therefore, option b. the second mechanism is the most reasonable.
Learn more about rate law, here:
brainly.com/question/14779101
#SPJ4
The concentration of volume of solution can be expressed in many ways for example: mass percent, volume percent, mass-by-volume percent, etc.
The formula for mass-by-volume percent is:
mass-by-volume percent = 
2% erythromycin solution means 2 g of erythromycin in 100 mL.
Consider, for 15 g the volume be X mL.
So,



Hence, the volume is
.
Amount (mol) of solute in 145.6 L of 0.850 M sodium cyanide
<h3>What is molarity?</h3>
Molar concentration (also known as molarity, quantity concentration, or substance concentration) is a measure of the concentration of a chemical species in a solution, specifically of a solute, in terms of amount of substance per unit volume of solution. The most often used unit for molarity in chemistry is the number of moles per liter, denoted by the unit symbol mol/L or mol/dm3 in SI units. A solution with a concentration of 1 mol/L is referred to as 1 molar, or 1 M.
To learn more about molarity visit:
brainly.com/question/8732513
#SPJ4