Answer:
The maximum height above its initial position is:

Explanation:
Using momentum conservation:
(1)
Where:
- m(b) is the mass of the bullet
- m(B) is the mass of the block
- v(ib) is the initial velocity of the bullet
- v(fb) is the final velocity of the bullet
- v(fB) is the final velocity of the block
Let's find v(fb) using equation (1)
We need to find the maximum height, it means that all kinetic energy converts into gravitational potential energy.




I hope it helps you!
Force of 500 N is acting on the parachutist.
Parachutist applies 500 N force in downward direction.
Answer:
300 N upward
Solution:
Parachutist feels air resistance of 800 N.
Thus, 800 N of force is acting in upward direction.
Total force acting on the parachutist is given by,
= air resistance force - force of parachutist
= 800-500
= 300 N
Direction of force is in upward direction because the air resistance force is more than force of parachutist.
The horizontal force : f = k*N
k- coefficient of friction
k = f /N
N = m * g = 45 kg * 9.81 m/s² = 441.45 N
k = 25 N : 441.45 N = 0.057
Answer C) 0.057
Answer:
4363.3231 feets²
Explanation:
Given that :
Distance, r = 50 ft
θ = 200°
The arc length of area covered :
Arc length = θ/360° * πr²
Arc length = (200/360) * 50 ft ^2 * π
Arc length = 0.5555555 * 2500 * π
Arc length = 4363.3231 feets²