Answer:
A separation technique to separate solids from a solution. Crystallization can be defined as the process through which the atoms/molecules of a substance arrange themselves in a well-defined three-dimensional lattice and consequently, minimize the overall energy of the system.
Explanation:
Answer:
2nd one
Explanation:
highest frequency shortest wavelength
Decreases, stays the same, increases.
The volume decreases because as air is cooled, the individual molecules collectively possess less kinetic energy and the distances between them decrease, thus leading to a decrease in the volume they occupy at a certain pressure (please note that my answer only holds under constant pressure; air, as a gas, doesn't actually have a definite volume).
The mass stays the same because physical processes do not create or destroy matter. The law of conservation of mass is obeyed. You're only cooling the air, not adding more air molecules.
The density decreases because as the volume decreases and mass stays the same, you have the same mass occupying a smaller volume. Density is mass divided by volume, so as mass is held constant and volume decreases, density increases.
Answer:
See the explanation below
Explanation:
To solve this problem we must decompose the initial speeds into x & y.
![v_{o}_{x}=25*cos(45)=17.67[m/s]\\v_{o}_{y}=25*sin(45)=17.67[m/s]\\](https://tex.z-dn.net/?f=v_%7Bo%7D_%7Bx%7D%3D25%2Acos%2845%29%3D17.67%5Bm%2Fs%5D%5C%5Cv_%7Bo%7D_%7By%7D%3D25%2Asin%2845%29%3D17.67%5Bm%2Fs%5D%5C%5C)
The acceleration of gravity is equal to g = 9.81[m/s^2] downward.
The maximum height is when the velocity of the projectile is zero in the component y, that is, it will not be able to go higher, by means of the following kinematic equation we can find that time, for that specific condition.
a)
![v_{y}=(v_{y})_{0}+a*t\\0 = 17.67 - 9.81*t\\17.67 = 9.81*t\\t=1.8 [s]](https://tex.z-dn.net/?f=v_%7By%7D%3D%28v_%7By%7D%29_%7B0%7D%2Ba%2At%5C%5C0%20%3D%2017.67%20-%209.81%2At%5C%5C17.67%20%3D%209.81%2At%5C%5Ct%3D1.8%20%5Bs%5D)
Note: Acceleration is taken as negative as it is directed downwards.
b)
The position in the x component can be found using the following kinematic equation
![x=(v_{x})_{o}*t\\x=17.67*1.8\\x=31.82[m]](https://tex.z-dn.net/?f=x%3D%28v_%7Bx%7D%29_%7Bo%7D%2At%5C%5Cx%3D17.67%2A1.8%5C%5Cx%3D31.82%5Bm%5D)
The position in the y component can be found using the following kinematic equation
![y =(v_{y})_{o}*t+\frac{1}{2} *g*t^{2} \\y=17.67*1.8-0.5*9.81*(1.8)^{2}\\ y=15.91[m]](https://tex.z-dn.net/?f=y%20%3D%28v_%7By%7D%29_%7Bo%7D%2At%2B%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%20%5C%5Cy%3D17.67%2A1.8-0.5%2A9.81%2A%281.8%29%5E%7B2%7D%5C%5C%20y%3D15.91%5Bm%5D)
c)
Since the motion on the X-axis is at constant speed, there is no acceleration, so the only acceleration that exists is due to gravity
d)
In the attached image we can see, the projectile with the vectors of acceleration and velocity.