Material that is not attracted to metal
Well it occurs in igneous, metamorphic, and sedimentary rocks.
quartz is a mineral, not a rock.
it is abundant or in other words rich.
A red apple absorbs all colors of visible light except red, so red light
is the only light left to bounce off of the apple toward our eyes.
(This is a big part of the reason that we call it a "red" apple.)
Here's how the various items on the list make out when they hit the apple:
<span>Red . . . . . reflected
Orange . . absorbed
Yellow . . . </span><span><span>absorbed
</span>Green . </span><span><span>. . absorbed
</span>Blue . . </span><span><span>. . absorbed
</span>Violet .</span><span> . . absorbed</span>
<span>Black . . . no light; not a color
White . . . has all colors in it</span>
Answer:
54 Kobo
Explanation:
Units of <u>electricity</u> are measured in kilowatt hours (kWh).
Given information:
- 900 watt electric iron
- Appliance usage = 4 hours a week for 5 weeks
- Unit cost of electricity = 3 Kobo per kWh
<h3><u>Step 1</u></h3>
Convert the wattage of the electric iron from watts to kilowatts.
1000 watts (W) = 1 kilowatt (kW)
⇒ 900 watts = 1 ÷ 1000 = 0.9 kilowatts
This means that the power consumption of the electric iron is 0.9 kW per hour of use.
<h3><u>Step 2</u></h3>
Total hours spent pressing clothes:
= 4 hours per week for 5 weeks
= 4 × 5
= 20 hours
<u>Total power consumption</u>:
= number of kW × number of hours
= 0.9 × 20
= 18 kWh
<h3><u>Step 3</u></h3>
To find the <u>total cost</u>, multiply the total kWh by the cost per kWh:
⇒ Cost = 18 × 3 = 54 Kobo
Answer:
a)1815Joules b) 185Joules
Explanation:
Hooke's law states that the extension of a material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically;
F = ke where;
F is the applied force
k is the elastic constant
e is the extension of the material
From the formula, k = F/e
F1/e1 = F2/e2
If a force of 60N causes an extension of 0.5m of the string from its equilibrium position, the elastic constant of the spring will be ;
k = 60/0.5
k = 120N/m
a) To get the work done in stretching the spring 5.5m from its position,
Work done by the spring = 1/2ke²
Given k = 120N/m, e = 5.5m
Work done = 1/2×120×5.5²
Work done = 60× 5.5²
Work done = 1815Joules
b) work done in compressing the spring 1.5m from its equilibrium position will be gotten using the same formula;
Work done = 1/2ke²
Work done =1/2× 120×1.5²
Works done = 60×1.5²
Work done = 135Joules