What? Do you have a picture of the problem ?
A person is submerged of about 97.9%.
The average density of the human body is given as 979 kg/ m³.
<h3>Define Law of floatation.</h3>
Law of floatation can be defined as the volume of the liquid displaced when a body floats on the liquid surface is equal to the body submerged in the water.
As body has the stable equilibrium state, the buoyancy of the fluid will be equal to the weight.
Weight of the body floating = Weight of the body immersed in fluid
Law of floatation = Density of the floating object / density of fluid
As fluid is the freshwater here, the density of fluid will be 1000 kg/ m³.
= (979 kg/ m³) / ( 1000 kg/ m³)
= 97.9 %
A person is submerged when floating gently in fresh water about 97.9%.
Learn more about law of floatation,
brainly.com/question/17032479
#SPJ4
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m
The particles are heating up so they are starting to move faster and closer together which causes them to change the pressure of the container