In will most likely decrease its speed.
hope this helps.
There are 10⁹ picoseconds in 1 Ms
1 picosecond= 10¹² s
1 Ms = 10⁻³ s
so the number of picoseconds in one Ms=(10⁻³ s/1 Ms) * (10¹² Ps/ 1 s)=10⁹
Thus there are 10⁹ picoseconds in 1 Ms
vf = 10 m/s. A ball with mass of 4kg and a impulse given of 28N.s with a intial velocity of 3m/s would have a final velocity of 10 m/s.
The key to solve this problem is using the equation I = F.Δt = m.Δv, Δv = vf - vi.
The impulse given to the ball with mass 4Kg is 28 N.s. If the ball were already moving at 3 m/s, to calculate its final velocity:
I = m(vf - vi) -------> I = m.vf - m.vi ------> vf = (I + m.vi)/m ------> vf = I/m + vi
Where I 28 N.s, m = 4 Kg, and vi = 3 m/s
vf = (28N.s/4kg) + 3m/s = 7m/s + 3m/s
vf = 10 m/s.
.
Answer:

Explanation:
The apparent brightness follows an inverse square law, therefore we can write:

where I is the apparent brightness and r is the distance from the Sun.
We can also rewrite the law as
(1)
where in this problem, we have:
apparent brightness at a distance
, where
million km
We want to estimate the apparent brightness at
, where
is ten times
, so

Re-arranging eq.(1), we find
:
