The sentence can be completed as follows:
"<span>A major difference between radio waves, visible light, and gamma rays is the
energy of the photons, which results in the different photon frequencies and wavelengths."
In fact, gamma rays have greater energy than visible light and visible light has greater energy than radio waves. The energy E of a photon is related to its frequency, f, by
</span>

<span>where h is the Planck constant. We see from this formula that the higher the frequency, the greater the energy. Instead, the wavelength is inversely proportional to the frequency:
</span>

<span>where c is the speed of light. Since the frequency is directly proportional to the energy, this means that the wavelength is inversely proportional to the energy.</span>
<span>When an object moves in a circle, the acceleration points toward the center of the circle. This acceleration is called centripetal acceleration.
We can use a simple equation to find centripetal acceleration.
a = v^2 / r
We can use this same equation to find the speed of the car.
v^2 = a * r
v = sqrt { a * r }
v = sqrt{ (1.50)(9.80 m/s^2)(11.0 m) }
v = 12.7 m/s
The speed of the roller coaster is 12.7 m/s</span>
Answer:

Explanation:
As we know that
velocity of bike = 7.5 m/s
velocity of car is 10 m/s
deceleration of car is 0.75 m/s^2
part a)
velocity of bike with respect to car is given as

acceleration of bike with respect to car is given as

now the distance of the bike with respect to car is given as



Part b)
Answer:
This difference is kept to a minimum because the resistance in transformers is a few tens of ohms and the resistance of modern voltmeters is of the order of MΩ.
Explanation:
A voltmeter is built by a galvanometer and a resistance in series, this set is connected in parallel to the resistance where the voltage is to be measured, therefore the voltage is divided between the voltmeter and the element to be measured, consequently the measured voltage It is less than the calculated one, since for them the resistance of the voltmeter is assumed infinite.
This difference is kept to a minimum because the resistance in transformers is a few tens of ohms and the resistance of modern voltmeters is of the order of MΩ.
Answer:
421.83 m.
Explanation:
The following data were obtained from the question:
Height (h) = 396.9 m
Initial velocity (u) = 46.87 m/s
Horizontal distance (s) =...?
First, we shall determine the time taken for the ball to get to the ground.
This can be calculated by doing the following:
t = √(2h/g)
Acceleration due to gravity (g) = 9.8 m/s²
Height (h) = 396.9 m
Time (t) =.?
t = √(2h/g)
t = √(2 x 396.9 / 9.8)
t = √81
t = 9 secs.
Therefore, it took 9 secs fir the ball to get to the ground.
Finally, we shall determine the horizontal distance travelled by the ball as illustrated below:
Time (t) = 9 secs.
Initial velocity (u) = 46.87 m/s
Horizontal distance (s) =...?
s = ut
s = 46.87 x 9
s = 421.83 m
Therefore, the horizontal distance travelled by the ball is 421.83 m