1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddik [55]
3 years ago
12

A baby elephant weighs 250 pounds on Earth. How much would the elephant weigh on Saturn?

Physics
1 answer:
BlackZzzverrR [31]3 years ago
8 0
Well since staurns gravity is 10.44 multiply the elephants weight times the gravity 
250x10.44 you will get 2610
hope i helped add me
Dosvedanya :)
You might be interested in
The average coefficient of linear expansion of copper is 1.7 10-5 (°c)−1. the statue of liberty is 93 m tall on a summer morning
sammy [17]

Let the rise in temperature be 5^0C

The expansion in length due to change in temperature is given by the expression lαΔt , where l is the length, α is the  coefficient of linear expansion, Δt is the change in temperature.

Here l = 93 m, α = 1.7*10^{-5}  ^0C^{-1}, and Δt = 5^0C

So expansion in length = 93*1.7*10^{-5}*5 = 0.007905 m = 0.79*10^{-3}m

So order of magnitude in change in length = -3


3 0
3 years ago
Read 2 more answers
A series circuit consists of a 100-ω resistor, a 10.0-μf capacitor, and a 0.350-h inductor. the circuit is connected to a 120-v
Tpy6a [65]
Current will be I=\dfrac{V_{rms}}{Z}=\dfrac{V_{rms}}{\sqrt{ R^{2}+(X_{C}-X_{L})^{2}}}\\where~X_{c}=\dfrac{1}{j.\omega .C}~and~X_{L}=j.\omega.L~where~\omega=2.\pi f~and~f=60Hz
now just pluf in the values and Voila..
7 0
3 years ago
The Young’s modulus of nickel is Y = 2 × 1011 N/m2 . Its molar mass is Mmolar = 0.059 kg and its density is rho = 8900 kg/m3 . G
Charra [1.4K]

Answer:

Atomic Size and Mass:

convert given density to kg/m^3 = 8900kg/m^3 2) convert to moles/m^3 (kg/m^3 * mol/kg) = 150847 mol/m^3 (not rounding in my actual calculations) 3) convert to atoms/m^3 (6.022^23 atoms/mol) = 9.084e28 atoms/m^3 4) take the cube root to get the number of atoms per meter, = 4495309334 atoms/m 5) take the reciprocal to get the diameter of an atom, = 2.2245e-10 m/atom 6) find the mass of one atom (kg/mol * mol/atoms) = 9.7974e-26 kg/atom Young's Modulus: Y=(F/A)/(dL/L) 1) F=mg = (45kg)(9.8N/kg) = 441 N 2) A = (0.0018m)^2 = 3.5344e-6 m^2 3) dL = 0.0016m 4) L = 2.44m 5) Y = 1.834e11 N/m^2 Interatomic Spring Stiffness: Ks,i = dY 1) From above, diameter of one atom = 2.2245e-10 m 2) From above, Y = 1.834e11 N/m^2 3) Ks,i = 40.799 N/m (not rounding in my actual calculations) Speed of Sound: v = ωd 1) ω = √(Ks,i / m,a) 2) From above, Ks,i = 40.799 N/m 3) From above, m,a = 9.7974e-26 kg 4) ω=2.0406e13 N/m*kg 5) From above, d=2.2245e-10 m 6) v=ωd = 4539 m/s (not rounding in actual calculations) Time Elapsed: 1) length sound traveled = L+dL = 2.44166 m 2) From above, speed of sound = 4539 m/s 3) T = (L+dL)/v = 0.000537505 s

7 0
3 years ago
A 6.0-kilogram block, sliding to the east across a horizontal, frictionless surface with a momentum of 30.0 kilogram · meters pe
Lina20 [59]

The final speed of the block after the collision with the obstacle is \boxed{3.33\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}}.

Further Explanation:

Given:

The mass of the block is 6.0\,{\text{kg}}.

The initial momentum of the block is 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/ {\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}.

The impulse imparted by the obstacle is 10\,{\text{N}} \cdot {\text{s}}.

Concept:

The block is sliding towards east and the impulse imparted by the obstacle is towards the obstacle is towards west on the block. It means that the impulse exerted by the obstacle will reduce the momentum of the block.

According to the impulse momentum theorem, the rate of change of momentum of the body is equal to the impulse imparted to the body.

The expression for the impulse momentum theorem is.

{p_f} - p{ & _i} = I               …… (1)                                    

Substitute 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}} for {p_i} and - 10\,{\text{N}} \cdot {\text{s}} for I  in equation (1).

 \begin{aligned}{p_f} &= - 10\,{\text{N}} \cdot {\text{s}} + 30\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}} \\&= 20\,{{{\text{kg}} \cdot {\text{m}}} \mathord{\left/{\vphantom {{{\text{kg}} \cdot {\text{m}}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}\\\end{aligned}

The final momentum of the block can be expressed as:

{p_f} = m{v_f}                   …… (2)                                  

Substitute 20\text{kg}\;\text{m/s} for {p_f} and 6.0\,{\text{kg}} for m in equation (2).

 \begin{aligned}20 &= 6 \times {v_f} \\ {v_f}&= \frac{{20}}{6}\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}}\\&= 3.33\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {\text{s}}}} \right.\kern-\nulldelimiterspace} {\text{s}}} \\ \end{aligned}

Thus, the final speed of the block after the collision with the obstacle is \boxed{3.33\;\text{m/s}}.

Learn More:

  1. Choose the 200 kg refrigerator. Set the applied force to 400 n (to the right) brainly.com/question/4033012
  2. With your hand parallel to the floor and your palm upright, you lower a 3-kg book downward brainly.com/question/9719731
  3. Which of the following is an example of a nonpoint source of freshwater pollution brainly.com/question/1482712

Answer Details:

Grade: High School

Chapter: Impulse-momentum theorem

Subject: Physics

Keywords:  Impulse, imparted, obstacle, speed, momentum, the obstacle, impulse-momentum theorem, frictionless surface, speed of block after collision.

5 0
3 years ago
Read 2 more answers
A 0.10-kg ball, traveling horizontally at 25 m/s, strikes a wall and rebounds at 19 m/s. What is the 7) magnitude of the change
IRISSAK [1]

Answer:

Change in momentum will be -4.4 kgm/sec

So option (A) is correct option

Explanation:

Mass of the ball is given m = 0.10 kg

Initial velocity of ball v_1=25m/sec

And velocity after rebound v_2=-19m/sec

We have to find the change in momentum

So change in momentum is equal to =m(v_2-v_1)=0.1\times (-19-25)=-4.4kgm/sec ( here negative sign shows only direction )

So option (A) will be correct answer

5 0
3 years ago
Other questions:
  • Which of these stopped operating in 2011
    10·2 answers
  • What city is located at 15 degrees south,50 degrees east?
    13·1 answer
  • When the net forces equal 0 N, they are which of the following? A. Balanced B. Unbalanced C. A push D. A pull
    13·1 answer
  • This diagram shows the process that powers stars. This process is called?
    8·2 answers
  • The vitreous humor, a transparent, gelatinous fluid that fills most of the eyeball, has an index of refraction of 1.34. Visible
    11·1 answer
  • A research study that proposed to describe the behaviors of high school teachers would be
    10·2 answers
  • Does frequency of sound change with the temperature?
    11·1 answer
  • How can acceleration be changed without changing speed?
    7·1 answer
  • Please help!!!!!!!!!!
    10·1 answer
  • What's an easy way to create an interference pattern of waves?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!