velocity of the physics instructor with respect to bus
acceleration of the bus is given as
acceleration of instructor with respect to bus is given as
now the maximum distance that instructor will move with respect to bus is given as
so the position of the instructor with respect to door is exceed by
so it will be moved maximum by 3 m distance
Answer:
0.83x10^-9 T
Direction is towards +z axis.
Explanation:
E = cB
E = magnitude of electrical 0.25 Em
c = speed of light in a vacuum 3x10^8 m/s
Therefore,
B = E/c = 0.25 ÷ 3x10^8
B = 0.83x10^-9 T
Magnetic fueld of a EM wave acts perpendicularly to its electric field, therefore it's direction is towards the +Z axis
Answer:
the coefficient of Kinetic friction between the tires and road is 0.38
Option A) .38 is the correct answer
Explanation:
Given that;
final velocity v = 0
initial velocity u = 15m/s
time taken t = 4 s
acceleration a = ?
from the equation of motion
v = u + at
we substitute
0 = 15 + a × 4
acceleration a = -15/4 = - 3.75 m/s²
the negative sign tells us that its a deacceleration so the sign can be ignored.
Deacceleration due to friction a = μ × g
we substitute
3.75 = μ × 9.8
μ = 3.75 / 9.8 = 0.3826 ≈ 0.38
Therefore the coefficient of Kinetic friction between the tires and road is 0.38
Option A) .38 is the correct answer
Answer:
A)t=<u>1.375s</u>
B)t=11s
Explanation:
for this problem we will assume that the east is positive while the west is negative, what we must do is find the relative speed between the wave and the powerboat, and then with the distance find the time for each case
ecuations
V=Vw-Vp (1)
V= relative speed
Vw= speed of wave
Vp=Speesd
t=X/V(2)
t=time
x=distance=44m
A) the powerboat moves to west
V=18-(-14)=32m/s
t=44/32=<u>1.375s</u>
B)the powerboat moves to east
V=18-14=4
t=44/4=<u>11s</u>