Answer:
Explanation:
Use the one-dimensional equation
Δx =
where delta x is the displacement of the object, v0 is the velocity of the object, a is the pull of gravity, and t is the time in seconds. That's our unknown.
Δx = -2 (negative because where it ends up is lower than the point at which it started),
, and
a = -9.8
Filling in:
and simplified a bit:

this should look hauntingly familiar (a quadratic, which is parabolic motion...very important in physics!!). We begin by getting everything on one side of the equals sign and solving for t by factoring:
(the 0 is also indicative of the object landing on the ground! Isn't this a beautiful thing, how it all just works so perfectly together?)
When you factor this however your math/physics teacher has you factoring you will get that
t = 1.3 sec and t = -.31 sec
Since we all know that time can NEVER be negative, it takes the ball 1.3 sec to hit the ground from a height of 2 m if it is rolling off the shelf at 5 m/s.
Answer:
find the sum of the inital and final velocitys and divide by 2 to find the average
Answer:
Explanation:
a ) The direction of angular velocity vector of second hand will be along the line going into the plane of dial perpendicular to it.
b ) If the angular acceleration of a rigid body is zero, the angular velocity will remain constant.
c ) If another planet the same size as Earth were put into orbit around the Sun along with Earth the moment of inertia of the system will increase because the mass of the system increases. Moment of inertia depends upon mass and its distribution around the axis.
d ) Increasing the number of blades on a propeller increases the moment of inertia , because both mass and mass distribution around axis of rotation increases.
e ) It is not possible that a body has the same moment of inertia for all possible axes because a body can not remain symmetrical about all axes possible. Sphere has same moment of inertia about all axes passing through its centre.
f ) To maximize the moment of inertia of a flywheel while minimizing its weight, the shape and distribution of mass should be such that maximum mass of the body may be situated at far end of the body from axis of rotation . So flywheel must have thick outer boundaries and this should be
attached with axis with the help of thin rods .
g ) When the body is rotating at the same place , its translational kinetic energy is zero but its rotational energy can be increased
at the same place.
Answer:
8400m
Explanation:
The engine that falls off would have the same constant horizontal velocity as the airplane's when if falls off if we ignore air resistance. So it would have a horizontal velocity of 280m/s for 30seconds before it hits the ground.
Therefor the horizontal distance the engine travels during its fall is
280 * 30 = 8400m
Answer:
f = 485.62 N
Explanation:
Since, the bag is moving with some acceleration. Hence, the unbalanced force will be given as:
Unbalanced Force = Horizontal Component Applied Force - Frictional Force
Unbalanced Force = Fx - f
But, from Newtons Second Law of Motion:
Unbalanced Force = ma
comparing the equations:
ma = Fx - f
f = F Cos θ - ma
where,
f = frictional force = ?
F = Applied force = 593 N
m = mass of person = 49 kg
a = acceleration = 0.57 m/s²
θ = Angle with horizontal = 30°
Therefore,
f = (593 N)(Cos 30°) - (49 kg)(0.57 m/s²)
f = 513.55 N - 27.93 N
<u>f = 485.62 N</u>