Globular clusters are very tightly bound by gravity, which gives them their spherical shapes and relatively high stellar densities toward their centers. The name of this category of star cluster is derived from the Latin globulus—a small sphere.
Answer:
the pressure at B is 527psf
Explanation:
Angular velocity, ω = v / r
ω = 20 /1.5
= 13.333 rad/s
Flow equation from point A to B
![P_A+rz_A-\frac{1}{2} Pr_A^2w^2=P_B+rz_B-\frac{1}{2} pr^2_Bw^2\\\\P_B = P_A + r(z_A-z_B)+\frac{1}{2} pw^2[(r_B^2)-(r_A)^2]\\\\P_B = [25 +(0.8+62.4)(0-1)+\frac{1}{2}(0.8\times1.94)\times(13.333)^2[2.5^2-1.5^2] ]\\\\P_B = 25 - 49.92+551.79\\\\P_B = 526.87psf\\\approx527psf](https://tex.z-dn.net/?f=P_A%2Brz_A-%5Cfrac%7B1%7D%7B2%7D%20Pr_A%5E2w%5E2%3DP_B%2Brz_B-%5Cfrac%7B1%7D%7B2%7D%20pr%5E2_Bw%5E2%5C%5C%5C%5CP_B%20%3D%20P_A%20%2B%20r%28z_A-z_B%29%2B%5Cfrac%7B1%7D%7B2%7D%20pw%5E2%5B%28r_B%5E2%29-%28r_A%29%5E2%5D%5C%5C%5C%5CP_B%20%3D%20%5B25%20%2B%280.8%2B62.4%29%280-1%29%2B%5Cfrac%7B1%7D%7B2%7D%280.8%5Ctimes1.94%29%5Ctimes%2813.333%29%5E2%5B2.5%5E2-1.5%5E2%5D%20%20%5D%5C%5C%5C%5CP_B%20%3D%2025%20-%2049.92%2B551.79%5C%5C%5C%5CP_B%20%3D%20526.87psf%5C%5C%5Capprox527psf)
the pressure at B is 527psf
Average <u>speed</u> = (distance covered) / (time to cover the distance) =
(5m) / (15 sec) =
(5/15) (m/s) = <em>1/3 m/s</em> .
Average <u>velocity</u> =
(displacement) / (time spent traveling) in the direction of the displacement
Average velocity = (5m) / (15 sec) left =
(5/15) / (m/sec) left =
<em>1/3 m/s left</em>.
A number without a direction is a speed, not a velocity.
Power = (current) x (voltage) .