Answer:
Assume that the sack was initially close to the sea level. Its weight will increase even though its mass stays the same.
Explanation:
The weight of an object typically refers to the size of the planet's gravitational attraction (a force) on this object. That's not the same as the mass of the object. The weight of an object at a position depends on the size of the gravitational field there; on the other hand, the mass of the object is supposed to be same regardless of the location- as long as the object stays intact.
Let
denote the strength of the gravitational field at a certain point. If the mass of an object is
, its weight at that point will be
.
Indeed,
on many places of the earth. However, this value is accurate only near the sea level. The equation for universal gravitation is a more general way for finding the strength of the gravitational field at an arbitrary height. Let
denote the constant of universal gravitation, and let
denote the mass of the earth. At a distance
from the center of the earth (where
.
The elevation of many places in Bhutan are significantly higher than that of many places in India. Therefore, a sack of potato in Bhutan will likely be further away from the center of the earth (larger
) compared to a sack of potato in India.
Note, that in the approximation, the value of
is (approximately, because the earth isn't perfectly spherical) inversely proportional to the distance from the center of the planet. The gravitational field strength
On the other hand, the weight of an object of fixed mass is proportional to the gravitational field strength. Therefore, the same bag of potatoes will have a smaller weight at most places in Bhutan compared to most places in India.
Answer:
39.1 °C
Explanation:
Recall the equation for specific heat:

Where q is the heat, m is the mass, c is the specific heat of the substance (in this case water), and delta T is the change in temperature.
You should know that the specific heat of water is 1 cal/g/C.
Using the information in the question:

The final temperature is about 39.1 °C.
Answer: Cellular respiration is spontaneous and exergonic. The energy released from the glucose is stored in ATP molelcules.
Explanation:
Spontaneous reactions have an increase in entropy (level of disorder) and a decrease in enthalpy (total energy). Cellular respiration goes from a more ordered state (one molecule of glucose) to a more disordered state (several molecules of CO2), and goes from a state with a lot of free energy to one with much less free energy. As a result, respiration is a spontaneous process.
As free energy from the glucose is released as ATP molecules during oxidation, the reaction is exergonic.
The correct answer is D :)
The kinetic energy causes the air molecules to move faster and they impact the container walls more frequently and with more force. The kinetic energy of the gas molecules increases, so collisions with the walls of the container are now more forceful than they were before. As a result, the pressure of the gas doubles.