They are arranged in shells
Answer:
ΔH = -470.4kJ
Explanation:
It is possible to sum 2 or more reactions to obtain the ΔH of the reaction you want to study (Hess's law). Using the reactions:
1. CaC2(s) + 2H2O(l) → C2H2(g) + Ca(OH)2(s)ΔH = −414kJ
2. 6C2H2(g) + 3CO2(g) + 4H2O(g) → 5CH2CHCO2H(g)ΔH = 132kJ
6 times the reaction 1.
6CaC2(s) + 12H2O(l) → 6C2H2(g) + 6Ca(OH)2(s)ΔH = −414kJ*6 = -2484kJ
This reaction + 2:
6CaC2(s) + 3CO2(g) + 16H2O(l) → + 6Ca(OH)2(s) + 5CH2CHCO2H(g) ΔH = -2484kJ + 132kJ = -2352kJ
As we want to calculate the net change enthalpy in the formation of just 1 mole of acrylic acid we need to divide this last reaction in 5:
6/5CaC2(s) + 3/5CO2(g) + 16/5H2O(l) → + 6/5Ca(OH)2(s) + CH2CHCO2H(g) ΔH = -2352kJ / 5
<h3>ΔH = -470.4kJ</h3>
Boyle’s law gives the relationship between pressure and volume of gases. It states that at constant temperature the pressure of gas is inversely proportional to volume of gas.
PV = k
Where P is pressure V is volume and k is constant
P1V1 = P2V2
Parameters at STP are on the left side and parameters for the second instance are on the right side of the equation
P1 - standard pressure - 1.0 atm
Substituting the values in the equation
1.0 atm x 5.00 L = P x 15.0 L
P = 0.33 atm
New pressure is 0.33 atm
The atomic mass of element is the weighted average atomic mass of the element with respect to the abundance of the isotopes of that element
atomic mass is the sum of the products of the mass of isotopes by their percentage abundance
atomic mass = 15.000 amu x 5.000 % + 16.000 amu x 95.000 %
= 0.7500 + 15.200
atomic mass of element is therefore 15.950
Molarity = number of moles/Volume (L). Solve for the number of moles in the initial solution (3.78M = n/0.3 L) and then use that amount of moles and the new volume (0.5 L) to solve for the new Molarity.