It would be considered a Homogeneous Mixture. A mixture with two or more components mixed evenly is a Homogeneous mixture.
Fluid and air flows around you and tries to crush you in but Fortunately, there is typically just as much pressure inside your body pressing outward as there is air pressure outside your body pushing inward. They typically cancel out, meaning that there is no overall force on you and you don't get crushed.
Answer:
Final temperature: 659.8ºC
Expansion work: 3*75=225 kJ
Internal energy change: 275 kJ
Explanation:
First, considering both initial and final states, write the energy balance:
Q is the only variable known. To determine the work, it is possible to consider the reversible process; the work done on a expansion reversible process may be calculated as:
The pressure is constant, so:
(There is a multiplication by 100 due to the conversion of bar to kPa)
So, the internal energy change may be calculated from the energy balance (don't forget to multiply by the mass):
On the other hand, due to the low pressure the ideal gas law may be appropriate. The ideal gas law is written for both states:
Subtracting the first from the second:

Isolating
:

Assuming that it is water steam, n=0.1666 kmol

ºC
Answer:
34 gram of FeO produced 8 gram of oxygen.
Explanation:
Given data:
Mass of FeO = 34 g
Mass of oxygen = ?
Solution;
Chemical equation:
2FeO → 2Fe + O₂
Number of moles of FeO:
Number of moles = mass/ molar mass
Number of moles = 34 g /71.8 g/mol
Number of moles = 0.5 mol
Now we will compare the moles of FeO with oxygen:
FeO : O₂
2 : 1
0.5 : 1/2 × 0.5 = 0.25
Mass of oxygen:
Mass = number of moles × molar mass
Mass = 0.25 mol × 32 g/mol
Mass = 8 g
So 34 gram of FeO produced 8 gram of oxygen.