Answer:
<em>The correct option is A) Arrhenius</em>
Explanation:
According to the Arrhenius concept of acids and bases, an acid must produce H+ ions when it is present in a solution and the base must produce OH- ions when placed in a solution.
Ammonia does not contain OH- ions of its own when dissolved in water.
The reaction of ammonia dissolving is water can be written as:
NH3 + H2O ⇌ NH4+ + OH−
As we can see from the equation, ammonia does form OH- ions but it does not have OH- ions on its own.
Hence, according to the Arrhenius concept, NH3 is not a base.
The IUPAC name for the given product is 2 chloro Butane.
<h3>What is IUPAC nomenclature?</h3>
IUPAC stands for 'International Union of Pure and Applied Chemistry', which givers some rule for designing the name of compounds of chemistry.
- In the given product total four carbon atoms are present and between all of them single bonds are present.
- In the second carbon atom, chlorine group is present.
- During the nomenclature process, first we write down the name of the attached group which is followed by the alkane chain.
Hence name of the product is 2 chloro Butane.
To know more about IUPAC nomenclature, visit the below link:
brainly.com/question/26635784
#SP1
Answer:
1) positive
2) carbocation
3) most stable
4) faster
Explanation:
A common test for the presence of alcohols can be achieved using the Lucas reagent. Lucas reagent is a mixture of concentrated hydrochloric acid and zinc chloride.
The reaction of Lucas reagent reacts with alcohols leading to the formation of an alkyl chloride. Since the reaction proceeds via a carbocation mechanism, tertiary alcohols give an immediate reaction. Once a tertiary alcohol is mixed with Lucas reagent, the solution turns cloudy almost immediately indicating an instant positive reaction.
Secondary alcohols may turn cloudy within five minutes of mixing the solutions. Primary alcohols do not significantly react with Lucas reagent obviously because they do not form stable carbocations.
Therefore we can use the Lucas reagent to distinguish between primary, secondary and tertiary alcohols.
Answer:
= 9.28 g CO₂
Explanation:
First write a balanced equation:
CH₄ + 2O₂ -> 2H₂O + CO₂
Convert the information to moles
7.50g CH₄ = 0.46875 mol CH₄
13.5g O₂ = 0.421875 mol O₂
Theoretical molar ratio CH₄:O₂ -> 1:2
Actual ratio is 0.46875 : 0.421875 ≈ 1:1
If all CH₄ is used up, there would need to be more O₂
So O₂ is the limiting reactant and we use this in our equation
Use molar ratio to find moles of CO₂
0.421875 mol O₂ * 1 mol CO₂/2 mol O₂=0.2109375 mol CO₂
Then convert to grams
0.2109375 mol CO₂ = 9.28114 g CO₂
round to 3 sig figs
= 9.28 g CO₂
Answer:
When a molecule is excited to a higher state it often ends up in its lowest excited state S1 and then emits radiation.