Answer:
The toxicant absorbtion can be reduced after exposure to the skin the surrounding clothing shoes or gloves should be removed or torn off than the part of the body which was exposured to the toxicant should be immediatly washed using clean running water for a while, with cold shower being the most recommended splashing method. In case of absorption for orally consumed chemicals should check on any remaining toxicant residue and be removed from the mouth. Vomiting should be induced to patients that are still conscious by providing them with liquids that can provoke vomiting. This will help in removing the toxicant in the intestinal and reduce their effect. Gastric lavage should then be done to induce diarrhea.
Explanation:
Answer:
The options <u>(A) -</u>The rate law for a given reaction can be determined from a knowledge of the rate-determining step in that reaction's mechanism. and <u>(C) </u>-The rate laws of bimolecular elementary reactions are second order overall ,<u>is true.</u>
Explanation:
(A) -The rate law can only be calculated from the reaction's slowest or rate-determining phase, according to the first sentence.
(B) -The second statement is not entirely right, since we cannot evaluate an accurate rate law by simply looking at the net equation. It must be decided by experimentation.
(C) -Since there are two reactants, the third statement is correct: most bimolecular reactions are second order overall.
(D)-The fourth argument is incorrect. We must track the rates of and elementary phase that is following the reaction in order to determine the rate.
<u>Therefore , the first and third statement is true.</u>
Please correct me if I'm wrong but I think the answer is b or c
also sorry if i do get it wrong
The balanced reaction is:
N2 + 3H2 = 2NH3
We are given the amount of the product to be produced.This will be the starting point of our calculations. We use the ideal gas equation to find for the number of moles.
<span>
n = PV / RT = 1.00(.520 L) / (0.08206 atm L/mol K ) 273 K
n= 0.0232 mol NH3
</span>0.0232 mol NH3 (1 mol N2 / 2 mol NH3) = 0.0116 mol N2
<span>Therefore, the correct answer is A.</span>
Answer:
When our bodies are dry and wind blows by, we lose some energy to the air molecules. When are bodies are wet, we have a substance on our skin that likes to absorb heat. So when wind blows by, we lose a LOT of energy to the air molecules. When the body loses heat energy, our body temperature drops.
Explanation:
hope it helps
<u>plzz </u><u>mark</u><u> it</u><u> as</u><u> brainliest</u><u>.</u><u>.</u><u>.</u>