Answer:
0.296 J/g°C
Explanation:
Step 1:
Data obtained from the question.
Mass (M) =35g
Heat Absorbed (Q) = 1606 J
Initial temperature (T1) = 10°C
Final temperature (T2) = 165°C
Change in temperature (ΔT) = T2 – T1 = 165°C – 10°C = 155°C
Specific heat capacity (C) =..?
Step 2:
Determination of the specific heat capacity of iron.
Q = MCΔT
C = Q/MΔT
C = 1606 / (35 x 155)
C = 0.296 J/g°C
Therefore, the specific heat capacity of iron is 0.296 J/g°C
The Reaction is spontaneous when temperature is 430 K. Hence, Option (C) is correct.
<h3>
</h3><h3>
What is Spontaneous reaction ?</h3>
Reactions are favorable when they result in a decrease in enthalpy and an increase in entropy of the system.
When both of these conditions are met, the reaction occurs naturally.
Spontaneous reaction is a reaction that favors the formation of products at the conditions under which the reaction is occurring.
According to Gibb's equation:
ΔG = ΔH - TΔS
ΔG = Gibbs free energy
ΔH = enthalpy change = +62.4 kJ/mol
ΔS = entropy change = +0.145 kJ/molK
T = temperature in Kelvin
- ΔG = +ve, reaction is non spontaneous
- ΔG = -ve, reaction is spontaneous
- ΔG = 0, reaction is in equilibrium
ΔH - TΔS = 0 for reaction to be spontaneous
T = ΔH / ΔS
Here,
T = 500K
Thus the Reaction is spontaneous when temperature is 500 K.
Learn more about Gibbs free energy here ;
https://brainly.in/question/13372282
#SPJ1
Balancing redox reactions:
Oxygen should be balanced by adding
as needed, while hydrogen should be balanced by adding
.
What is a redox reaction?
Redox reactions, also known as oxidation-reduction reactions, involve the simultaneous oxidation and reduction of two different reactants.
The Half-Equation Method is one technique used to balance redox processes. The equation is divided into two half-equations using this technique: one for oxidation and one for reduction.
By changing the coefficients and adding
,
, and
in that order, each reaction is brought into equilibrium:
- By putting the right number of water (
) molecules on the other side of the equation, the oxygen atoms are brought into balance. - By adding
ions to the opposing side of the equation, one can balance the hydrogen atoms (including those added in step 2 to balance the oxygen atom). - Total the fees for each side. Add enough electrons (
) to the more positive side to make them equal. (As a general rule,
and
are nearly always on the same side.) - The
on either side must be made equal; if not, they must be multiplied by the lowest common multiple (LCM) in order to make them equal. - One balanced equation is created by adding the two half-equations and canceling out the electrons. Additionally, common terms should be eliminated.
- Now that the equation has been verified, it can be balanced.
Learn more about redox reaction here,
brainly.com/question/20068208
#SPJ4
- The reaction in which we can't take back the product to reactant form .Or in simple words the reaction which is irreversible is called chemical reaction
Example:-
We cannot pull back the reaction to get wax back .