Answer: Two electron configurations of elements that would have similar chemical properties are (2) and (4).
Explanation:
(1) 
(2) 
(3) ![[Ar]4s^23d^5](https://tex.z-dn.net/?f=%5BAr%5D4s%5E23d%5E5)
(4) ![[Ar]4s^23d^{10}^4p^5](https://tex.z-dn.net/?f=%5BAr%5D4s%5E23d%5E%7B10%7D%5E4p%5E5)
Valence electrons : These are the electrons present in last principal quantum number of an atom of the element.
Two electron configurations represent elements that would have similar chemical properties are (2) and (4). This is because number of valence electrons present in both of them are same that is seven valence electrons . Also valence electrons of both the elements are present in p-orbital which means that they both belongs to same group in a periodic table. The members of same group in a periodic table have similar chemical properties.
A covalent bond is formed between two non-metals that have similar electronegativities.
An <em>i</em><em>o</em><em>n</em><em>i</em><em>c</em><em> </em><em>b</em><em>o</em><em>n</em><em>d</em> is formed between a metal and a non-metal. Non-metals(-ve ion) are "stronger" than the metal(+ve ion) and can get electrons very easily from the metal. These two opposite ions attract each other and form the ionic bond.
To be honest it have to be c because it shows things
Jupiter, Saturn, Uranus, Neptune, Jovian... is your answer.