Answer:
The pressure of the gas at 23 C is 179.92 kPa.
Explanation:
Gay-Lussac's law indicates that, as long as the volume of the container containing the gas is constant, as the temperature increases, the gas molecules move faster. Then the number of collisions with the walls increases, that is, the pressure increases. That is, the pressure of the gas is directly proportional to its temperature.
In short, when there is a constant volume, as the temperature increases, the pressure of the gas increases. And when the temperature is decreased, the pressure of the gas decreases.
Gay-Lussac's law can be expressed mathematically as follows:

Studying two states, one initial 1 and the other final 2, it is satisfied:

In this case:
- P1= 310 kPa
- T1= 237 C= 510 K (being 0 C= 273 K)
- P2= ?
- T2= 23 C= 296 K
Replacing:

Solving:

P2= 179.92 kPa
<u><em>The pressure of the gas at 23 C is 179.92 kPa.</em></u>
Answer:
The Kelvin temperature scale reflects the relationship between temperature and average kinetic energy.
Explanation:
The Kelvin temperature of a substance is directly equal to the average kinetic energy of the particles of a substance.
2 Li(s) +Cl₂→ 2 Li⁺ (aq) + 2Cl⁻ (aq)
The cell potential of the reaction above is +4.40V
<em><u>calculation</u></em>
Cell potential =∈° red - ∈° oxidation
in reaction above Li is oxidized from oxidation state 0 to +1 therefore the∈° oxid = -3.04
Cl is reduce from oxidation state 0 to -1 therefore the ∈°red = +1.36 V
cell potential is therefore = +1.36 v -- 3.04 = + 4.40 V
They should report the density as 1.11 g/L
.
Density = mass/volume = 2.260g/2.04 mL
My calculator says the density <em>1.107 843 137 g/mL</em>
However, the answer can have <em>no more</em> significant figures than are in the number with the <em>fewest </em>significant figures.
The volume measurement has only three significant figures, so we must round off the density to three significant figures.
We drop all the digits after the zero.
The digit to be dropped is 7, so we <em>round up </em>the last significant figure of the answer.
1.10<u>7 843 137</u> → 1.11