Answer:
Five Laboratory Safety Rules:
1). Do not eat in the laboratory.
2). Do not touch any chemical or reagent unless you are told to do so.
3). Neither play in lab, nor sit on the table.
4). Don't remove labels on any reagent.
5). Don't taste anything in the laboratory, no matter how familiar it appears.
Hope it helps.
3 mol H₂ → 2 mol NH₃
5 mol H₂ → x mol NH₃
x=2*5.0/3=3.3
n(NH₃)=3.3 mol
Answer:
Explanation:
You have to use formula b to your answer
The molecular mass of the immunoglobulin G, given the data from the question is 1.53×10⁵ g/mole
<h3>How to determine the molarity</h3>
We'll begin by calculating the molarity of the immunoglobulin G. This is illustrated below:
- Volume = 0.106 L
- Temperature (T) = 25 °C = 25 + 273 = 298 K
- Osmotic pressure (π) = 0.733 mbar = 0.733 × 0.000987 = 0.00072 atm
- Gas constant (R) = 0.0821 atm.L/Kmol
- Van't Hoff factor (i) = 1
- Molarity (M)
π = iMRT
M = π / iRT
M = 0.00072 / (1 × 0.0821 × 298)
M = 0.000029 M
<h3>How to determine the mole of immunoglobulin G</h3>
- Molarity = 0.000029 M
- Volume = 0.106 L
- Mole =?
Mole = Molarity × volume
Mole = 0.000029 × 0.106
Mole = 3.074×10⁻⁶ mole
<h3>How to determine the molar mass of mmunoglobulin G</h3>
- Mole = 3.074×10⁻⁶ mole
- Mass = 0.470 g
- Molar mass =?
Molar mass = mass / mole
Molar mass = 0.47 / 3.074×10⁻⁶
Molar mass = 1.53×10⁵ g/mole
Learn more about Osmotic pressure:
brainly.com/question/5925156
#SPJ1
Answer:
Chanice covers distance=12,000 metres
Chanice displacement=8602 metres
Explanation: