Answer:
The forces involved in a collision are equal in size and directed in the opposite direction, and they accelerate both objects. Each object accelerates equally in collisions with things of equal mass.
Explanation:
Answer:
<em>Gases tend to deviate from ideal gas law at </em><u><em>high pressures and low temperatures.</em></u>
Explanation:
The main statements from molecular kinetic theory to describe an ideal gas is that 1) the gas particles occupy a neglictible fraction of the total volume of the gas, and 2) there is not force of attraction between gas particles.
HIgh pressure means that the gas particles will be forced closer to each other, making that the mean distance between the particles be realtively more important and their volume less neglictible. This is a violation the first assumption described above.
Since the temperature is directly related to the kinetic energy, and the latter with the movement of the particles (average speed), low temperatures lead to the molecules being less independent of each other, i.e. the forces between the molecules will count more . This fact constitutes a violation of the second principle established in the first paragraph.
In <u>conclusion</u>, <em>high pressures and low temperatures tend to deviate gases from the ideal gas law.</em>
You can read more about ideal and real gases behavior on brainly.com/question/12449772
Metals are lustrous, malleable, ductile, good conductors of heat and electricity. Other properties include: State: Metals are solids at room temperature with the exception of mercury, which is liquid at room temperature
Answer:
The correct option is b. false
Explanation:
The distance between the nucleus of an atom and it's outermost shell is called is atomic radius. The atomic radius of an Iron atom (Fe) is 0.126 nm or 1.26 angstrom. The distance between the nuclei of two Iron atoms will be 1.26 × 2 = 2.52 angstroms.
Since 2.52 angstroms is lower than 4 angstroms, the correct option is false