Answer: divide by 946.353
= 1.58 x 10^-4 or 0.000159
Explanation:
Answer:
The answer is B. Van der Waals forces are weaker than ionic and covalent bonds.
Explanation:
In general, if we arrange these molecular forces from the strongest to weakest, it would be like this:
Covalent bonds > Ionic bonds > Hydrogen bonds > Dipole-Dipole Interactions > Van der Waals forces
Covalent bonds are known to have the strongest and most stable bonds since they go deep and into the inter-molecular state. A diamond is an example of a compound with this characteristic bond.
Ionic bonds are the next strongest molecular bond following covalent bonds. This is due to the protons and electrons causing an electro-static force which results to the strong bonds. An example would be Sodium Chloride (NaCl), which when separated is Na⁺ and Cl⁻.
Van der Waals forces, also known as Dispersion forces, are the weakest type of molecular bonds. They are only formed through residual molecular attractions when molecules pass by each other. It doesn't even last long due to the uneven electron dispersion. It can be made stronger by adding more electrons in the molecule. This kind of molecular bonds appear in non-polar molecules such as carbon dioxide.
HOPE THIS HELPS!!!!!!!!!!!!!!
///////////////////////////////////////////////////////////////////////////////////////////
Step one calculate the moles of each element
that is moles= % composition/molar mass
molar mass of Ca = 40g/mol, S= 32 g/mol , O= 16 g/mol
moles of Ca = 29.4 /40g/mol=0.735 moles, S= 23.5/32 =0.734 moles, O= 47.1/16= 2.94 moles
calculate the mole ratio by dividing each mole with smallest mole that is 0.734
Ca= 0.735/0.734= 1, S= 0.734/0.734 =1, O = 2.94/ 0.734= 4
therefore the emipical formula = CaSO4
Answer:
Mass of heptane = 102g
Vapor pressure of heptane = 454mmHg
Molar mass of heptane = 100.21
No of mole of heptane = mass/molar mass = 102/100.21
No of mole of heptane = 1.0179
Therefore the partial pressure of heptane = no of mole heptane *Vapor pressure of heptane
Partial pressure of heptane = 1.0179*454mmHg
Partial pressure of heptane = 462.1096 = 462mmHg
the partial pressure of heptane vapor above this solution = 462mmHg
Answer:
Temperature
Explanation:
Kinetic energy of gass molecules is directly propotional to the temperature.