I believe the answer is two
<span>When an electromagnetic wave passes from space to matter, some part of the energy is absorbed by the matter and it increases its energy. The wave may reflect and some part may pass through the matter depending on the amount of energy they have. The amplitude of the wave decreases if some parts of it are reflected. </span>
20 grams of borax contains (20.0g) / (201 g mol -1) =0.10 mol of borax.
Therefore 0.40 mol of borax
Answer:
The equilibrium concentrations are:
[SO2]=[NO2] = 0.563 M
[SO3]=[NO] = 1.04 M
Explanation:
<u>Given:</u>
Equilibrium constant K = 3.39
[SO2] = [NO2] = [SO3] = [NO] = 0.800 M
<u>To determine:</u>
The equilibrium concentrations of the above gases
Calculation:
Set-up an ICE table for the given reaction

I 0.800 0.800 0.800 0.800
C -x -x +x +x
E (0.800-x) (0.800-x) (0.800+x) (0.800+x)
The equilibrium constant is given as:
![Keq = \frac{[SO3][NO]}{[SO2][NO2]}=\frac{(0.800+x)^{2}}{(0.800-x)^{2}}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BSO3%5D%5BNO%5D%7D%7B%5BSO2%5D%5BNO2%5D%7D%3D%5Cfrac%7B%280.800%2Bx%29%5E%7B2%7D%7D%7B%280.800-x%29%5E%7B2%7D%7D)

x = 0.2368 M
[SO2]=[NO2] = 0.800 -x = 0.800 - 0.2368 = 0.5632 M
[SO3]=[NO] = 0.800 +x = 0.800 + 0.2368 = 1.037 M