Answer:
(a) 
(b) 
(c) 
Explanation:
Hello,
(a) In this case, since entropy remains unchanged, the constant
should be computed for air as an ideal gas by:


Next, we compute the final temperature:

Thus, the work is computed by:

(b) In this case, since
is given, we compute the final temperature as well:

And the isentropic work:

(c) Finally, for isothermal, final temperature is not required as it could be computed as:

Regards.
The solution would be like
this for this specific problem:
<span>Moles of carbon = 58.8 /
12 = 4.9 </span><span>
<span>Moles of hydrogen = 9.8 / 1 = 9.8 </span>
<span>Moles of oxugen = 31.4 / 16 m= 1.96 </span>
<span>Ratio 4.9 / 1.96 = 2.5 9.8 / 1.96 = 5.0 1.96 / 1.96 = 1 </span></span>
Simplest
formula = C5H10<span>
</span><span>I hope this helps and if
you have any further questions, please don’t hesitate to ask again.</span>
Answer:
2Fe + 3H2SO4 + Fe2(SO4)3+ 3H2
Explanation:
1. Fe (SO4) 3 is an incorrectly written formula because iron is trivalent as we can see by this three ahead of SO4. SO4 is divalent always.
2. since (SO4) is 3, this three shows us that there must be 3 in the reactants as well.
so now there is 3H2SO4
3. Since we have added 3 to one hydrogen we must add another. So now it's 3H2
4. and finally iron. In Fe2 (SO4) 3 we see this 2 in front of Fe which means it goes 2Fe.
Answer:
Quantitative observation is an objective collection of data which is primarily focused on numbers and values.