Answer:


Explanation:
first write the equilibrium equaion ,
⇄ 
assuming degree of dissociation
=1/10;
and initial concentraion of
=c;
At equlibrium ;
concentration of
![[C_3H_5O_3^{-} ]= c\alpha](https://tex.z-dn.net/?f=%5BC_3H_5O_3%5E%7B-%7D%20%20%5D%3D%20c%5Calpha)
![[H^{+}] = c\alpha](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20c%5Calpha)

is very small so
can be neglected
and equation is;

= 
![P_H =- log[H^{+} ]](https://tex.z-dn.net/?f=P_H%20%3D-%20log%5BH%5E%7B%2B%7D%20%5D)





composiion ;
![c=\frac{1}{\alpha} \times [H^{+}]](https://tex.z-dn.net/?f=c%3D%5Cfrac%7B1%7D%7B%5Calpha%7D%20%5Ctimes%20%5BH%5E%7B%2B%7D%5D)
![[H^{+}] =antilog(-P_H)](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3Dantilog%28-P_H%29)
![[H^{+} ] =0.0014](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D%20%3D0.0014)


Answer:
I say the second one, im not rlly sure tho
Explanation:
Answer:
A) positive; added
Explanation:
Based on the reaction:
2NaHCO3(s) + 129kJ → Na2CO3(s) + H2(g) + CO2(g)
<em>2 moles of NaHCO3 requires 129kJ to produce 1 mole of Na2CO3, 1 mole of H2 and 1 mole of CO2.</em>
<em />
That means, the energy must be added being, thus, an exothermic reaction. The exothermic reactions have ΔH >0.
Thus, right answer is:
A) positive; added
Answer:
Using the coarse adjustment knob of the microscope in high power may lead to the breaking of the slide if adjusted and raised the slide too much which can damage the sample as well as the high power lens.
In this case, I would recommend using the fine adjustment knob and moving away from the end of the viewing area of the microscope so there would no collision take place. The fine adjustment will help to get a clear image.
Answer:
A. it is the lowest at low temperatures
Explanation:
It is true with respect to the kinetic energy of a molecule that the it is the lowest at low temperatures.
The kinetic energy of a molecule is the energy due to the motion of the particles within a substance.
- Kinetic energy is directly proportional to the temperature of a substance.
- The higher the temperature, the more the kinetic energy of the molecules within a system.
- At low temperature, kinetic energy is the lowest.
- At the highest temperature, kinetic energy is the highest