1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
s2008m [1.1K]
2 years ago
13

Edwin Hubble is most famous for?

Physics
1 answer:
Aleks04 [339]2 years ago
4 0
I believe it is the answer is A
You might be interested in
The magnetic field at point P due to a 2.0-A current flowing in a long, straight, thin wire is 8.0 μT. How far is point P from t
Tanzania [10]

Answer:

r = 0.05 m = 5 cm

Explanation:

Applying ampere's law to the wire, we get:

B = \frac{\mu_oI}{2\pi r}\\\\r =  \frac{\mu_oI}{2\pi B}

where,

r = distance of point P from wire = ?

μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²

I = current = 2 A

B = Magnetic Field = 8 μT = 8 x 10⁻⁶ T

Therefore,

r = \frac{(4\pi\ x\ 10^{-7}\ N/A^2)(2\ A)}{2\pi(8\ x\ 10^{-6}\ T)}\\\\

<u>r = 0.05 m = 5 cm</u>

8 0
2 years ago
Alguien que sepa de electromecánica porfavor
kkurt [141]
LAPA HDIDOSHSUWJWVWIHDHDOSSHSVWIME
8 0
2 years ago
Which has more kinetic energy, a basketball rolling at a walking pace or a baseball rolling at the pace of someone running? How
icang [17]

Answer:

answer 2 because the baseball has less mass then the 1st one

8 0
2 years ago
A 70.0-kg person throws a 0.0480-kg snowball forward with a ground speed of 33.5 m/s. A second person, with a mass of 55.0 kg, c
saw5 [17]

Answer:

The final velocity of the thrower is \bf{3.88~m/s} and the final velocity of the catcher is \bf{0.029~m/s}.

Explanation:

Given:

The mass of the thrower, m_{t} = 70~Kg.

The mass of the catcher, m_{c} = 55~Kg.

The mass of the ball, m_{b} = 0.0480~Kg.

Initial velocity of the thrower, v_{it} = 3.90~m/s

Final velocity of the ball, v_{fb} = 33.5~m/s

Initial velocity of the catcher, v_{ic} = 0~m/s

Consider that the final velocity of the thrower is v_{ft}. From the conservation of momentum,

&& m_{t}v_{ft} + m_{b}v_{fb} = (m_{t} + m_{b})v_{it}\\&or,& v_{ft} = \dfrac{(m_{t} + m_{b})v_{it} - m_{b}v_{fb}}{m_{t}}\\&or,& v_{ft} = \dfrac{(70 + 0.0480)(3.90) - (0.0480)(33.5)}{70}\\&or,& v_{ft} = 3.88~m/s

Consider that the final velocity of the catcher is v_{fc}. From the conservation of momentum,

&& (m_{c} + m_{b})v_{fc} = m_{b}v_{it}\\&or,& v_{fc} = \dfrac{m_{b}v_{it}}{(m_{c} + m_{b})}\\&or,& v_{fc} = \dfrac{(0.048)(33.5)}{(55.0 + 0.0480)}\\&or,& v_{fc} = 0.029~m/s

Thus, the final velocity of thrower is 3.88~m/s and that for the catcher is 0.029~m/s.

8 0
2 years ago
The graph below shows the position of an ant as it crawls over a flat picnic blanket. The total time for the ant to go from the
Mice21 [21]

The average speed of the ant is 0.276 cm/s and the average velocity is 0.136 cm/s.

The correct answer is option D.

In the given graph, we can deduce the following;

  • the total time of the motion, = 1 mins + 45 s = 60 s + 45 s = 105 s

The average speed of the ant is calculated as;

average \ speed = \frac{total \ distance }{total \ time }

The total distance from the graph is calculated as follows;

  • first horizontal distance from 2 cm to 8 cm = 8 - 2 = 6 cm
  • first upward distance from 3 cm to 5 cm = 5 - 3 = 2 cm
  • second horizontal distance from 8 cm to 6 cm = 8 - 6 = 2 cm
  • second upward distance from 5 cm to 12 cm = 12 - 5 = 7 cm
  • third horizontal distance from 6 cm to 13 cm = 13 - 6 = 7 cm
  • fourth downward distance from 12 cm to 9 cm = 3 cm
  • final horizontal distance from 13 cm to 15 cm = 2cm

The total distance = (6 + 2 + 2 + 7 + 7 + 3 + 2) cm = 29 cm

average \ speed = \frac{total \ distance }{total \ time } = \frac{29 \ cm}{105 \ s} = 0.276 \ cm/s

The average velocity is calculated as the change in displacement per change in time.

The displacement is the shortest distance between the start and end positions.

  • This shortest distance is the straight line connecting the start and end position. Call this line P
  • From the end position at x = 15 cm, draw a vertical line from y = 9 cm, to y = 3 cm. The displacement = 9 cm - 3 cm = 6 cm
  • Also, draw a horizontal line from start at x = 2 cm to x = 15 cm. The displacement = 15 cm - 2 cm = 13 cm

Notice, you have a right triangle, now calculate the length of  line P.

                                                ↓end

                                                ↓

                                                ↓ 6cm

                                                ↓

  start -------------13 cm------------

Use Pythagoras theorem to solve for P.

P^2 = 6^2 + 13^2\\\\P^2 = 36 + 169\\\\P^2 = 205\\\\P= \sqrt{205} \\\\P = 14.318 \ cm

The average velocity of the ant is calculated as;

average \ velocity= \frac{\Delta displacemnt  }{total\ time }= \frac{14.318 \ cm}{105 \  s} = 0.136 \ cm/s  \\\\

Thus, the average speed of the ant is 0.276 cm/s and the average velocity is 0.136 cm/s.

Learn more here: brainly.com/question/589950

5 0
2 years ago
Other questions:
  • What we see as "moonlight" is really reflected sunlight.<br><br> True or False?
    9·1 answer
  • A bicycle tire is spinning clockwise at 3.40 rad/s. During a time period Δt = 2.50 s, the tire is stopped and spun in the opposi
    14·2 answers
  • The jumping gait of the kangaroo is efficient because energy is stored in the stretch of stout tendons in the legs; the kangaroo
    15·1 answer
  • A magnetic hockey puck (0.40 kg) hits another hockey puck (0.40 kg) at rest and both travel together to the right at 8.0 m/s. Ho
    12·2 answers
  • Sound waves travel at the rate of 343 m/s at 20°C. If a man standing 450 meters away from the wall of a canyon yells, “Hello,” h
    10·1 answer
  • If a heat engine takes in 4565 kJ and gives up 2955 kJ during one cycle, what is the engine’s efficiency?
    15·1 answer
  • A force of 15 N is applied to a spring, causing it to stretch 0. 3 m. What is the spring constant for this particular spring? N/
    6·1 answer
  • Which of the following statements about the force on a charged particle due to a magnetic field are not valid?
    6·1 answer
  • Dust, accumulated at the time of the formation of the solar system is sometimes preserved in asteroids, meteoroids, and meteorit
    12·1 answer
  • A large tank is filled with water to a depth of 38 m. An opening is located 14 m
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!