1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
3 years ago
6

An insulated pipe carries steam at 300°C. The pipe is made of stainless steel (with k = 15 W/mK), has an inner diameter is 4 cm,

and has an outer diameter is 4.5 cm. Fiberglass insulation (with k= 0.038 W/mK and ε = 0.9) of 2.5 cm thickness covers the pipe. Consider the pipe to be inside a large room with air and wall temperatures of 20°C. If the convective heat transfer coefficient inside the pipe is 75 W/m² and the convective heat transfer coefficient outside the pipe is 10 W/m², find the rate of heat loss per-unit-length (W/m) from the pipe and the temperature of the outer surface of the insulation. Note 1: You may find helpful example problems in Incropera and DeWitt. Note 2: You will need to guess a temperature for the outside of the pipe to compute an estimated hrad. After solving for the temperature of the outside using your thermal circuit, evaluate how close your original estimate was. Then iterate (repeat the math) with the new surface temperature. Consider coding your computations in R or Python to make this go faster.
Physics
1 answer:
insens350 [35]3 years ago
8 0

Answer:

The answers to the question are

(i) The rate of heat loss per-unit-length (W/m) from the pipe is 131.62 W

(ii) The temperature of the outer surface of the insulation is 49.89 °C

Explanation:

To solve the question, we note that the heat transferred is given by

Q = \frac{2\pi L(t_{hf} - t_{cf}) }{\frac{1}{h_{hf}r_1}+\frac{ln(r_2/r_1)}{k_A} + \frac{ln(r_3/r_2)}{k_B} +\frac{1}{h_{cf}r_3}}

Where

t_{hf} = Temperature at the inside of the pipe = 300 °C

t_{f} = Temperature at the outside of the pipe = 20 °C

r₁ =internal  radius of pipe = 4.0 cm

r₂ = Outer radius of pipe = 4.5 cm

r₃ = Outer radius of the insulation = r₂ + 2.5 = 7.0 cm

k_A = 15 W/m·K

k_B = 0.038 W/m·K

h_{hf} = 75 W/m²·K

h_{cf} = 10 W/m²·K

Plugging in the values in the above equation where for a unit length L = 1 m, we have

Q = 131.32 W

From which we have, for the film of air at the pipe outer boundary layer

Q = \frac{t_A-t_B}{R_T} Where R_T for the air film on the pipe outer surface is given by

R_T= \frac{1}{\alpha A}

where A =area of the outside of the pipe

= \frac{1}{10*2\pi*0.07*1 } = 0.227 K/W

Therefore

131.32 W = \frac{t_A-20}{0.227} which gives

t_A = 49.89 °C

Heat transferred by radiation = q' = ε×σ×(T₁⁴ - T₂⁴)

Where ε = 0.9, σ, = 5.67×10⁻⁸W/m²·(K⁴)

T₁ = Surface temperature of the pipe = 49.89 °C and

T₂ = Temperature of the surrounding = 20.00 °C

Plugging in the values gives, q' = 0.307 W per m²

Total heat lost per unit length = 131.32 + 0.307 =131.62 W

You might be interested in
Copernicus incorrectly assumed that the planets?
hammer [34]
Nicholas Copernicus correctly assumed that the planets revolved around the sun but he incorrectly assumed that the planets followed a perfect circle orbit around the sun. It was later on discovered by Johannes Kepler that the planets moved around the sun following an elliptical orbit.
6 0
2 years ago
Which change would decrease the total current, I, flowing through this circuit?
iren [92.7K]

Answer:

A. Increasing the voltage of the battery

Explanation:

The relationship between voltage, V, current, I and resistance, R, is given as follows;

V = I × R

∴ I = V/R

From the above relationship, the current flowing in the circuit is directly proportional to the voltage of the battery, and inversely proportional to the resistance, 'R', of the circuit

Therefore, increasing the voltage, 'V', of the battery, increases the total current, 'I', flowing in the circuit.

7 0
3 years ago
A 100-kg running back runs at 5 m/s into a stationary linebacker. It takes 0.5 s for the running back to be completely stopped.
Elza [17]

Answer:

1000 N

Explanation:

First, we need to find the deceleration of the running back, which is given by:

a=\frac{v-u}{t}

where

v = 0 is his final velocity

u = 5 m/s is his initial velocity

t = 0.5 s is the time taken

Substituting, we have

a=\frac{0-5 m/s}{0.5 s}=-10 m/s^2

And now we can calculate the force exerted on the running back, by using Newton's second law:

F=ma=(100 kg)(-10 m/s^2)=-1000 N

so, the magnitude of the force is 1000 N.

6 0
3 years ago
Read 2 more answers
As air is heated, the particles speed up and spread out (becoming less dense). Hot air balloon pilots can change the balloon’s a
Jobisdone [24]

Answer:

Turn the heater on  

Explanation:

There are two main forces involved in a balloon flight

The downward force is the total weight of the balloon: the air it contains, the gas bag, the basket, the passengers, etc.

The upward force is the weight of the of the air the balloon displaces.

During level flight ,

buoyant force = weight of displaced air - total weight of balloon

If you increase the temperature of the air in the bag, the air molecules spread out and leave through the bottom of the bag.  

The balloon still has the same volume, so the weight of displaced outside air stays the same.

However, the balloon has lost some hot inside air, so its total weight decreases.  

The upward force is greater than the downward force, so the balloon rises.

3 0
3 years ago
Lightning produces a maximum air temperature on the order of 104K, whereas a nuclear explosion produces a temperature on the ord
gtnhenbr [62]

Answer:

tex]2.898\times 10^{-7}\ \text{m}[/tex] ultraviolet region

2.898\times 10^{-10}\ \text{m} x-ray region

Explanation:

T = Temperature

b = Constant of proportionality = 2.898\times 10^{-3}\ \text{m K}

\lambda = Wavelength

T=10^4\ \text{K}

From Wein's law we have

\lambda=\dfrac{b}{T}\\\Rightarrow \lambda=\dfrac{2.898\times 10^{-3}}{10^4}\\\Rightarrow \lambda=2.898\times 10^{-7}\ \text{m}

The wavelength of the radiation will be 2.898\times 10^{-7}\ \text{m} and it is in the ultraviolet region.

T=10^7\ \text{K}

\lambda=\dfrac{2.898\times 10^{-3}}{10^7}\\\Rightarrow \lambda=2.898\times 10^{-10}\ \text{m}

The wavelength of the radiation will be 2.898\times 10^{-10}\ \text{m} and it is in the x-ray region.

5 0
2 years ago
Other questions:
  • Help please me please
    14·1 answer
  • What is the dot product of a= -2i - 5j and b=i -4j
    15·1 answer
  • Create a list of three questions that are good science questions.
    5·1 answer
  • In a vertical dive, a peregrine falcon can accelerate at 0.6 times the free-fall acceleration g (that is, at 0.6 g ) in reaching
    15·1 answer
  • A kid throws a pencil straight up at
    8·2 answers
  • Only answer if you would send your eggplant
    11·1 answer
  • Seeing how strong our gravitational pull is here on Earth, would it be possible to kill someone if you drop a penny off the Empi
    6·1 answer
  • You’re in the Nevada dessert and your 1800 kg car suddenly runs out of gas. You are going 25 m/s downhill towards a valley in th
    11·1 answer
  • A block is at rest on the incline shown in the gure. The coefficients of static and kinetic friction are 0.6 and 0.51, respec- t
    11·1 answer
  • A 40kg cart gains a KE of 200J. How fast does it go?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!