Answer:
the mass of the lipid content, to the nearest hundredth of a kg, in this solution =0.46 kg
Explanation:
Total heat content of the fat = heat content of water +heat content of the lipids
Let it be Q
the Q= (mcΔT)_lipids + (mcΔT)_water
total mass of fat M= 0.63 Kg
Q= heat supplied = 100 W in 5 minutes
ΔT= 20°C
c_lipid= 1700J/(kgoC)
c_water= 4200J/(kgoC)
then,

solving the above equation we get
m= 0.46 kg
the mass of the lipid content, to the nearest hundredth of a kg, in this solution =0.46 kg
Answer:
I would say be Mindful.
Explanation:
There could be like a MILLION answers for this. I think that you should personally go with your gut. That would be the best option. I think it's mindful because you really do have to be mindful when you post. Like not posting too much, not posting stuff you're uncomfortable with, not posting when on vacation, etc. So, I think you should be mindful.
<span>The cation is positively charged and has a charge twice that of the anion, for example +2.
The anion is negatively charged and in our example where the cation has a +2 charge, it must have a -1 charge.
In order for the charges to equal zero, there must be two anions: -1 x 2 = -2
So the answer is D. AX2</span>
Explanation:
It is given that,
Bandwidth of a laser source, 
(b) Let t is the time separation of sections of sections of the light wave that can still interfere. The time period is given by :



(a) Let h is the coherence length of the source. It is given by :

c is the speed of light

l = 0.0099 m
Hence, this is the required solution.
Answer:
Answer is A, it will pass through to focal point after reflecting.
Explanation:
I had the same question in a test, Sorry that you had to do this question in middle school.