A point (a, b) in the second Quadrant, is any point where a is negative and b is positive.
For example (-3, 5), (-189, 14) etc are all points in the 2.Quadrant
Rotating a point P(x, y) in the second Quadrant 180° counterclockwise, means rotating 180° counterclockwise about the origin, which maps point P to P'(-a, -b) in the fourth Quadrant.
Answer: (3a+b)⋅(9a 2
−3ab+b2 )
Step-by-step explanation:
![\bf f(x)=y=2x+sin(x) \\\\\\ inverse\implies x=2y+sin(y)\leftarrow f^{-1}(x)\leftarrow g(x) \\\\\\ \textit{now, the "y" in the inverse, is really just g(x)} \\\\\\ \textit{so, we can write it as }x=2g(x)+sin[g(x)]\\\\ -----------------------------\\\\](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3Dy%3D2x%2Bsin%28x%29%0A%5C%5C%5C%5C%5C%5C%0Ainverse%5Cimplies%20x%3D2y%2Bsin%28y%29%5Cleftarrow%20f%5E%7B-1%7D%28x%29%5Cleftarrow%20g%28x%29%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bnow%2C%20the%20%22y%22%20in%20the%20inverse%2C%20is%20really%20just%20g%28x%29%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ctextit%7Bso%2C%20we%20can%20write%20it%20as%20%7Dx%3D2g%28x%29%2Bsin%5Bg%28x%29%5D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C)
![\bf \textit{let's use implicit differentiation}\\\\ 1=2\cfrac{dg(x)}{dx}+cos[g(x)]\cdot \cfrac{dg(x)}{dx}\impliedby \textit{common factor} \\\\\\ 1=\cfrac{dg(x)}{dx}[2+cos[g(x)]]\implies \cfrac{1}{[2+cos[g(x)]]}=\cfrac{dg(x)}{dx}=g'(x)\\\\ -----------------------------\\\\ g'(2)=\cfrac{1}{2+cos[g(2)]}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Blet%27s%20use%20implicit%20differentiation%7D%5C%5C%5C%5C%0A1%3D2%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%2Bcos%5Bg%28x%29%5D%5Ccdot%20%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%5Cimpliedby%20%5Ctextit%7Bcommon%20factor%7D%0A%5C%5C%5C%5C%5C%5C%0A1%3D%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%5B2%2Bcos%5Bg%28x%29%5D%5D%5Cimplies%20%5Ccfrac%7B1%7D%7B%5B2%2Bcos%5Bg%28x%29%5D%5D%7D%3D%5Ccfrac%7Bdg%28x%29%7D%7Bdx%7D%3Dg%27%28x%29%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Ag%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5Bg%282%29%5D%7D)
now, if we just knew what g(2) is, we'd be golden, however, we dunno
BUT, recall, g(x) is the inverse of f(x), meaning, all domain for f(x) is really the range of g(x) and, the range for f(x), is the domain for g(x)
for inverse expressions, the domain and range is the same as the original, just switched over
so, g(2) = some range value
that means if we use that value in f(x), f( some range value) = 2
so... in short, instead of getting the range from g(2), let's get the domain of f(x) IF the range is 2
thus 2 = 2x+sin(x)
![\bf 2=2x+sin(x)\implies 0=2x+sin(x)-2 \\\\\\ -----------------------------\\\\ g'(2)=\cfrac{1}{2+cos[g(2)]}\implies g'(2)=\cfrac{1}{2+cos[2x+sin(x)-2]}](https://tex.z-dn.net/?f=%5Cbf%202%3D2x%2Bsin%28x%29%5Cimplies%200%3D2x%2Bsin%28x%29-2%0A%5C%5C%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Ag%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5Bg%282%29%5D%7D%5Cimplies%20g%27%282%29%3D%5Ccfrac%7B1%7D%7B2%2Bcos%5B2x%2Bsin%28x%29-2%5D%7D)
hmmm I was looking for some constant value... but hmm, not sure there is one, so I think that'd be it
Answer:
992
Step-by-step explanation:
You must convert the meter the kilometer by miltiplying by 1000
and when you do it you must multiply 0.992 by 1000 since it is a fraction .
or you can work it this way :
- 0.992⇒1m
- x(the new rate) ⇒1000m
- x= 0.992*1000= 992
Once, 14 divided by 16 equals 1 with a remainder of 2