Answer:
The answer is: <em>carbon</em>
Explanation:
Organic molecules contain the chemical element carbon (C) in its structure. In this type of molecules, carbon is usually bonded to hydrogen (H), oxygen (O) and, with less frecuency, nitrogen (N). Therefore, in these molecules, carbon forms simple, double and triple bonds with itself. Examples of organic molecules that are very important in biology are carbohydrates, lipids, proteins and nucleic acids.
Answer:
-A molecule is the smallesr part is compound whereas a compound is the combination of two or more atoms in a fixed proportion by wiehgt.
- A glass of water is an example of compound but a small portion of water can be called molecule.
Answer:
The equilibrium position shifts to the right, in accordance to the constraint principle
Answer:
12.6.
Explanation:
- We should calculate the no. of millimoles of KOH and HCl:
no. of millimoles of KOH = (MV)KOH = (0.183 M)(45.0 mL) = 8.235 mmol.
no. of millimoles of HCl = (MV)HCl = (0.145 M)(35.0 mL) = 5.075 mmol.
- It is clear that the no. of millimoles of KOH is higher than that of HCl:
So,
[OH⁻] = [(no. of millimoles of KOH) - (no. of millimoles of HCl)] / (V total) = (8.235 mmol - 5.075 mmol) / (80.0 mL) = 0.395 M.
∵ pOH = -log[OH⁻]
∴ pOH = -log(0.395 M) = 1.4.
∵ pH + pOH = 14.
∴ pH = 14 - pOH = 14 - 1.4 = 12.6.
The reaction between mercury (Hg) and sulfur (S) to form HgS is:
Hg + S ------------- HgS
Therefore: 1 mole of Hg reacts with 1 mole of S to form 1 mole of HgS
The given mass of Hg = 246 g
Atomic mass of Hg = 200.59 g/mol
# moles of Hg = 246 g/ 200.59 gmol-1 = 1.226 moles
Based on the reaction stoichiometry,
# moles of S that would react = 1.226 moles
Atomic mass of S = 32 g/mol
Therefore, mass of S = 1.226 moles*32 g/mole = 39.23 g
39.2 g of sulfur would be needed to react completely with 246 g of Hg to produce HgS