Calcium forms an ion with a positive 2 charge and chlorine forms an ion with a negative one charg, so the formula is <span>CaC<span>l2</span></span>
Group 1 metals and group 2 metals form positive ions by losing 1 and 2 electrons respectively. Non-metals in group 17 gain 1, group 16 gain 2 and group 15 gain 3. Elements which lose electrons form positive ions while elements that gain electrons form negative ions.
To write a formula, you must balance charges so the overall charge is zero. A simple way to do this is to swap the # of the ion's charge and make it the subscript of the other ion. However, leave off the number 1 and reduce to lowest whole number ratio.
Answer:
Two plates pull towards each other
Explanation:
Along a convergent plate boundary, two plates moves towards each other as the move in the same direction.
This results in different forms of plate interactions depending on the plate types.
- At an ocean - ocean and continental - ocean convergent front, subduction of the oceanic plate occurs. This is because the oceanic plate below is denser than the asthenosphere.
- At a continental - continental convergent front, the continental crust is pulls upward and build up as a mountain.
- The subduction produces trenches and some volcanic islands.
If an object has a higher density than the fluid it is in (fluid can mean liquid or gas), it will sink. If it has a lower density, it will float. Density is determined by an object's mass and volume. If two objects take up the same volume, but have one has more mass, then it also has a higher density.
The correct answer is - 1 cm/yr.
Alongside the western coast of South America, the Nazca plate and the South American plate are in a collision for several million years now, with the Nazca plate being the one that is subducting in this convergent plate boundary.
If the Nazca plate's focus has moved 1,000 km in the last 10 million years, than in order to get to the annual movement of the subduction we need to convert the km into cm first:
1 km = 10,000 cm
1,000 x 10,000 = 10,000,000
1,000 km = 10,000,000 cm
Than we need to divide the number of cm with the number of years:
10,000,000 / 10,000,000 = 1
And we get the result of 1 cm/yr.
Answer:
Explanation:
equilibrium constant
Kc = [ C ]² / [ A ] [ B ]
= .5² / .2 x 3
= .4167
Let moles of A to be added be n
concentration of A unreacted becomes .2 + n M
increase of product C by .2 M will require use of A and B be .1 M
So unreacted A = .2 + n - .1 = n + .1
Kc = [ C ]² / [ A ] [ B ]
.4167 = .7² / ( n + .1 ) ( 3 - .1 )
n + .1 = .4
n = . 3 moles .
So .3 moles of A to be added .