The beaker of acetic acid will cool more quickly.
The specific heat capacity of acetic acid is about half that of water.
Thus, it takes twice as much heat gain (or loss) in acetic acid to cause a given change in temperature.
If everything else is constant and heat is being lost at the same rate, the temperature of the acetic acid should drop twice as fast as that of water.
Answer: Heating the hydrated forms of cobalt chloride reverses the reactions above, returning cobalt chloride to the blue, water-free, or anhydrous, state. Water is "liberated" in these reactions, known as dehydration reactions.
Explanation:
Answer:
They experience the same pressure
Explanation:
To answer this question, we recall Pascal's, Law Pascal's law states that an increase in pressure at a point in a confined cylinder containing a fluid, there is also an equal increase at all other points in that cylinder.
According to Pascal's law the pressure if the pressure expereienced by the larger diameter piston increases, the pressure experienced by the smaller diameter piston also increases by the same amount
However considering that pressure = Force/area F1/A1 =F2/A2
thus where A1 = πD²÷4 and A2 = πD²÷ 16 we have
we have F1×4/πD² = F2×16/πD² or F1 = 4× F2
They experience the same pressure but the larger cylinder delivers four times the force transmitted from he outside to the smaller cylinder
Oxygen has 8 electrons. On the outer ring, it has 6 valance electrons. It need 2 more valance electrons to be stable.
Standard temperature is 273 K
Standard pressure is 1 atm
We use the ideal gas equation to find out density of nitrogen gas in g/L
Ideal gas equation:

Molar mass of 
Pressure = 1 atm
Temperature = 273 K

= 1.25 g/L
Therefore, density of nitrogen gas at STP is 1.25 g/L