Unfortunately, you failed to include the table 1 from which the molar heat capacity of aluminum could have been obtained. However, as a general rule, the heat needed to raise the temperature of a certain substance by certain degrees is calculated through the equation,
H = mcpdT
where H is heat, m is mass, cp is specific heat capacity, and dT is change in temperature. From a reliable source, cp for aluminum is equal to 0.215 cal/g°C. Substituting this to the equation,
H = (260.5 g)(0.215 cal/g°C)(125°C - 0)
H = 7000.94 cal
The way you calculate the empirical formula is to firstly assume 100g. To find each elements moles you take each elements percentage listed, times it by one mole and divide it by its atomic mass. (ex: moles of K =55.3g x 1 mole/39.1g, therefore there is 1.41432225 moles of Potassium) Once you’ve completed this for every element you list each elements symbol beside it’s number of moles and divide by the smallest number because it can only go into its self once. After you’ve done this, you’ve found your empirical formula, which is the simplest whole number ratio of atoms in a compound. I’ve added an example of a empirical question I completed last semester :)
Answer:
SN2
Explanation:
The first step of ether cleavage is the protonation of the ether since ROH is a better leaving group than RO-.
The second step of the reaction may proceed by either SN1 or SN2 mechanism depending on the structure of the ether. Methyl and primary ethers react with HI by SN2 mechanism while tertiary ethers react with HI by SN1 mechanism. Secondary ethers react with HI by a mixture of both mechanisms.
Dipentyl ether is a primary ether hence when treated with HI, the reaction with HI proceeds by SN2 mechanism as explained above.
Answer: In classical physics terms, you do work on an object when you exert a force on ... One Newton is the force required to accelerate one kilogram of mass at 1 meter per second per second. ... The Newton-meters are termed joules (J). ... of the working object is transferred to that object raising its energy state.
Explanation:
Answer:
The coefficients are 1, 3, 1, 3
Explanation:
The equation;
AlCl3 + NaOH → Al(OH)3 + NaCl
can be balanced by using the coefficients 1, 3, 1, 3, such that the balanced equation will be;
AlCl3 + 3NaOH → Al(OH)3 + 3NaCl
Chemical equations needs to be balanced so as to follow the law of conservation of mass. This occurs when the number of the different atoms of elements in the reactants side is equal to that of the products side.