Separate Salt and Water Using Distillation
If you want to collect the water, you can use distillation. This works because salt has a much higher boiling point than water. One way to separate salt and water at home is to boil the salt water in a pot with a lid.
hope this helps!!
The motion of atoms decrease when there is a decrease in velocity and kinetic energy that is decrease in temperature. this occurs during freezing and condensation.
Let's think, if you have a candle ( that is not blown out ) the physical properties are the candles mass and hence ( hence of the candle is the stiffness of the candle), weight, length, density, surface friction ( force resisting the relative motion of solid surface), and the energy content. You then, need to go to bed, so, therefore, you want to blow the candle out. Once you blow the candle out, the candle is evidently going to have at least a couple of different physical properties, than before it was blown out. The physical properties are a different color, the length of the candle, the texture, you could also apply the mass of the candleholder, and then, the mass of the candleholder and the candle, last but not least, the mass of just the candle. Once you observe the candle, you should be able to plug in those observations into the physical properties. As to, because you asked' what are the physical properties of a candle that has been blown out... We are going to assume that we did observe the candle, and the length of the candle in cm, after being blown out is 30cm. (12 inches; customary). Next, that the color of the candle is the same (let us say the original color is taffy pink). We can then say that the texture of the candle is waxy and the top and smooth as you get to the bottom ( the texture depends on how long the candle was burning, but we are saying that we lit the candle, and then immediately blew the flame out ) . We now have the mass of the candleholder, which will scientificity stay the same. Now, for the mass of the candleholder and the candle, that all depends of how long you let it burn ( remember, we are saying we lit the wick and then immediately blew the fame out ). So, the candle really didn't change is mass, so, therefore, wouldn't affect the mass of the candleholder including the candle. That also goes to the mass of the candle.
The one that isn't considered an aspect of environmental health such as smog<span />
The question in incomplete, complete question is;
Determine the theoretical yield:
Excess aqueous copper(II) nitrate reacts with aqueous sodium sulfide to produce aqueous sodium nitrate and copper(II) sulfide as a precipitate. In this reaction 469 grams of copper(II) nitrate were combined with 156 grams of sodium sulfide to produce 272 grams of sodium nitrate.
Answer:
The theoretical yield of sodium nitrate is 340 grams.
Explanation:

Moles of copper(II) nitrate = 
Moles of sodium sulfide = 
According to reaction, 1 mole of copper (II) nitrate reacts with 1 mole of sodium sulfide.
Then 2 moles of sodium sulfide will react with:
of copper (II) nitrate
As we can see from this sodium sulfide is present in limiting amount, so the amount of sodium nitrate will depend upon moles of sodium sulfide.
According to reaction, 1 mole of sodium sulfide gives 2 mole of sodium nitrate, then 2 mole of sodium sulfide will give:
sodium nitrate
Mass of 4 moles of sodium nitrate :
85 g/mol × 4 mol = 340 g
Theoretical yield of sodium nitrate = 340 g
The theoretical yield of sodium nitrate is 340 grams.