Answer:
The final temperature is 348.024°C.
Explanation:
Given data:
Specific heat of copper = 0.385 j/g.°C
Energy absorbed = 7.67 Kj (7.67×1000 = 7670 j)
Mass of copper = 62.0 g
Initial temperature T1 = 26.7°C
Final temperature T2 = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Q = m.c. ΔT
7670 J = 62.0 g × 0.385 j/g °C ×( T2- 26.7 °C
)
7670 J = 23.87 j.°C ×( T2- 26.7 °C
)
7670 J / 23.87 j/°C = T2- 26.7 °C
T2- 26.7 °C = 321.324°C
T2 = 321.324°C + 26.7 °C
T2 = 348.024°C
The final temperature is 348.024°C.
Answer : The
must be administered.
Solution :
As we are given that a vial containing radioactive selenium-75 has an activity of
.
As, 3.0 mCi radioactive selenium-75 present in 1 ml
So, 2.6 mCi radioactive selenium-75 present in 
Conversion :

Therefore, the
must be administered.
Answer:
- Producers are organisms that make their own food. - They are autotrophs. - They can convert inorganic substances into organic substances. ... - Consumers are organisms that need to eat other organisms to obtain energy.
Explanation:
Nickel is a pure substance
Rust is also a pure substance