Answer:
14 mol e⁻
Explanation:
Step 1: Write the balanced half-reaction for the reduction of permanganate to manganese
8 H⁺(aq) + 7 e⁻ + MnO₄⁻(aq) ⇒ Mn(s) + 4 H₂O(l)
Step 2: Calculate the moles corresponding to 110 g of manganese
The molar mass of Mn is 55 g/mol.
110 g × 1 mol/55 g = 2 mol
Step 3: Calculate the number of moles of electrons needed to produce 2 moles of Mn
According to the half-reaction, 7 moles of electrons are required to produce 1 mole of Mn.
2 mol Mn × 7 mol e⁻/1 mol Mn = 14 mol e⁻
The mass of carbon dioxide that would be made by reacting 30 grams C2H6 with 320 grams O2 will be 80 grams
From the balanced equation of the reaction:

The mole ratio of C2H6 to O2 is 2:7.
- Mole of 30 grams C2H6 = mass/molar mass
= 30/30
= 1 mole
- Mole of 320 grams O2 = 320/32
= 10 moles
Thus, C2H6 is the limiting reactant.
Mole ratio of C2H6 to CO2 according to the equation = 1:2
Since the mole of C2H6 is 1, the equivalent mole of CO2 would, therefore, be 2.
Mass of 2 moles CO2 = mole x molar mass
= 2 x 44
= 88 grams
More on stoichiometric calculations can be found here: brainly.com/question/8062886?referrer=searchResults
Answer:
4.64 grams.
Explanation:
without stating a desired unit, stating the answer in any unit is acceptable. So you can use grams and the problem is done for you
Answer:
A_________________________
Answer:
Here's what I get
Explanation:
At the introductory level of chemistry, I can think of only two situations when you use Greek prefixes.
They indicate the number of atoms or groups in a molecule when you are naming a compound.
1. Binary covalent compounds
For example, P₂S₅ is diphosphorus pentasulfide.
2. Hydrates
For example, Na₂SO₄·10H₂O is sodium sulfate decahydrate.