Answer:
200 , 0 , 133.33333
Explanation:
velocity = change of X / change of T
so
400/2 = 200
0/2 = 0
400/3 = 133.33333
Answer:
(a) The initial speed required is 13116 m/s
(b) The escape speed is 10394 m/s
This problem involves the application of newtons laws of gravitation. The forces in action here are conservative and as a result mechanical energy is conserved.
The full calculation can be found in the attachment below.
Explanation:
In both parts (a) and (b) the energy conservation equation were used. Assumption was made that when the object is very far from the planet the distance from the planet's center approaches infinity and the gravitational potential energy approaches zero.
The calculation can be found below.
The benefits of the cool down period are quite important, it allows your body to slow your heart rate at a nice healthy safe pace, if you stop right away it can cause breathing, heart, and muscle problems.
Answer:
Mass has total mechanical energy, which is the sum of kinetic and potential energy. as the mass is dropping, potential energy is converted into kinetic energy so mechanical energy is preserved If there is no friction. If there is friction, some of the mechanical energy is lost as heat energy so it changes.
Explanation: