Answer:
The average kinetic energy of the molecules increases
Explanation:
The temperature of a substance is proportional to the average kinetic energy of the particles in the substance.
In fact, for an ideal gas for instance, there is the following relationship:

where
KE is the average kinetic energy of the particles
k is the Boltzmann's constant
T is the absolute temperature of the gas
When we heat a substance (such as the flask of water in this problem), we are giving thermal energy to the particles of the substance; therefore, these particles will move faster on average, so their kinetic energy will increase (and the temperature of the substance will increase as well).
<span>B.Shape of continents look like puzzle pieces that can fit into one another</span>
Answer:
option C
Explanation:
Final velocity of the object is 114 m / s. Hence, final velocity of the object is 114 m / s.
Answer:
Explanation:
a ) speed of passenger = circumference / time
= 2π R / Time
= 2 x 3.14 x 50 / 60
= 5.23 m /s
b )
centrifugal force = m v² /R
= (882 /9.8 ) x 5.23² / 50
= 77.47 N
Apparent weight at the highest point
real weight - centrifugal force
= 882 - 77.47
= 804.53 N
Apparent weight at the lowest point
real weight + centrifugal force
= 882 +77.47
= 959.47 N
c ) if the passenger’s apparent weight at the highest point were zero
centrifugal force = weight
mv² /R = mg
v² = gR
= 9.8 X 50
v = 22.13 m /s
d )
apparent weight
mg - mv² / R
= 882 - (882 / 9.8 )x 22.13²/50
= 882 + 882
= 1764 N
=
The magnitude of the electric field for 60 cm is 6.49 × 10^5 N/C
R(radius of the solid sphere)=(60cm)( 1m /100cm)=0.6m

Since the Gaussian sphere of radius r>R encloses all the charge of the sphere similar to the situation in part (c), we can use Equation (6) to find the magnitude of the electric field:

Substitute numerical values:

The spherical Gaussian surface is chosen so that it is concentric with the charge distribution.
As an example, consider a charged spherical shell S of negligible thickness, with a uniformly distributed charge Q and radius R. We can use Gauss's law to find the magnitude of the resultant electric field E at a distance r from the center of the charged shell. It is immediately apparent that for a spherical Gaussian surface of radius r < R the enclosed charge is zero: hence the net flux is zero and the magnitude of the electric field on the Gaussian surface is also 0 (by letting QA = 0 in Gauss's law, where QA is the charge enclosed by the Gaussian surface).
Learn more about Gaussian sphere here:
brainly.com/question/2004529
#SPJ4