The law of conservation of angular momentum.
What is angular momentum?
Angular momentum is the rotational analog of linear momentum in physics. It is a conserved quantity, meaning the total angular momentum of a closed system remains constant. Both the direction and magnitude of angular momentum are conserved.
What is the law of conservation of angular momentum?
The law of conservation of angular momentum asserts that a system's total angular momentum is conserved when there is no external torque present. In other words, the magnitude and direction of the total angular momentum of an isolated system remain constant.
According to the Nebular Theory, the solar system originated as a massive, slowly rotating cloud of gas measuring around one light-year in diameter. As the cloud cooled, its own gravity caused it to collapse. It distorted into a revolving pancake shape due to the conservation of angular momentum, which required it to spin faster as it shrank.
Hence, the law of conservation of angular momentum best explains why the solar nebula spun faster as it shrank in size.
To leans more about the law of angular momentum link is given:
brainly.com/question/26870978?
#SPJ4
Answer:
c seems to be the only reasonable answer
The second law of motion states that: the acceleration of an object is dependent upon two variables: - the net force acting upon the object and the mass of the object. The acceleration of an object depends directly upon the net force acting upon the object
<h3>Meaning of Motion</h3>
Motion can be defined as the process of changing position willingly or due to a force applied.
Motion can be seen in different forms and types depending on the object.
In conclusion, The second law of motion is used to deduce the formula for acceleration.
Learn more about second law of motion: brainly.com/question/2009830
#SPJ1
If he runs at the same speed he will cover next 200m in 40s
that is at the average of 4.0m
Answer:
The best option is for the following option m = 15 [g] and V = 5 [cm³]
Explanation:
We have that the density of a body is defined as the ratio of mass to volume.

where:
Ro = density = 3 [g/cm³]
Now we must determine the densities with each of the given values.
<u>For m = 7 [g] and V = 2.3 [cm³]</u>
![Ro=7/2.3\\Ro=3.04 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%3D7%2F2.3%5C%5CRo%3D3.04%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
<u>For m = 10 [g] and V = 7 [cm³]</u>
<u />
<u />
<u>For m = 15 [g] and V = 5 [cm³]</u>
<u />
<u />
<u>For m = 21 [g] and V = 8 [cm³]</u>
<u />
<u />